Mittag-Leffler函数及其在粘弹性应力松弛中的应用

被引:20
作者
陈宏善
李明明
康永刚
张素玲
机构
[1] 西北师范大学物理与电子工程学院,高分子材料重点实验室
关键词
分数Maxwell模型; Mittag-Leffler函数; 粘弹性; 应力松弛;
D O I
暂无
中图分类号
O344.1 [塑性力学基本理论];
学科分类号
080102 ;
摘要
Mittag-Leffler函数在分数阶粘弹理论中起着重要作用.我们对该函数的计算及收敛性进行了分析;利用遗传算法结合共轭梯度法,提出了对广义函数进行非线性参数拟合的方法.用分数Maxwell模型对强弱、硬柔具有显著差别的塑料、玻璃态合金及聚合物近熔体的应力松弛过程进行了研究.
引用
收藏
页码:1271 / 1275
页数:5
相关论文
共 5 条
[1]  
Stress relaxation in an Zr52.5Ti5Cu17.9Ni14.6Al10 bulk metallic glass[J] . O. P. Bobrov,S. N. Laptev,V. A. Khonik.Physics of the Solid State . 2004 (3)
[2]   Relaxation modulus in the fitting of polycarbonate and poly(vinyl chloride) viscoelastic polymers by a fractional Maxwell model [J].
Jiménez, AH ;
Jara, BV ;
Santiago, JH .
COLLOID AND POLYMER SCIENCE, 2002, 280 (05) :485-489
[3]  
Application of Time-Based Fractional Calculus Methods to Viscoelastic Creep and Stress Relaxation of Materials[J] . Samuel w.J. Welch,Ronald A.L. Rorrer,Ronald G. Duren.Mechanics of Time-Dependent Materials . 1999 (3)
[4]   Nonlinear viscoelastic properties and change in entanglement structure of linear polymer1. Single-step large shearing deformations [J].
Yoshinobu Isono ;
Toshihiro Kamohara ;
Atsushi Takano ;
Toshio Kase .
Rheologica Acta, 1997, 36 (3) :245-251
[5]  
A new dissipation model based on memory mechanism[J] . M. Caputo,F. Mainardi.Pure and Applied Geophysics PAGEOPH . 1971 (1)