提出一种基于双树复小波变换的隐Markov树模型的信号降噪方法,并将其成功应用于机械故障诊断中。机械设备的振动信号中不可避免地存在着噪声,使得微弱故障信息的提取一直是故障诊断的难点和热点。双树复小波变换具有近似平移不变性,而隐Markov树模型能有效刻画小波系数间的相关性和非高斯性,两种优势的结合可以获得比常规软、硬阈值小波降噪法和小波域隐Markov树模型降噪法更好的降噪效果。它不仅能有效抑制高斯白噪声,还能够去除异常冲击干扰,仿真信号验证了这一点。对于实际滚动轴承信号,使用该方法同样可以获得满意的结果。