针对采用单一梯度方向直方图(HOG)特征进行人体检测时易受竖直梯度分量干扰的缺点,提出了将分块局部二值模式(LBP)特征加入HOG特征的方法。首先,将检测窗口划分为大小为16×16的不重叠块,以块为单位统计LBP特征直方图,并通过大量实验获得了LBP算子的最佳参数;然后用优化过的插值方式计算HOG特征,将两者组成联合直方图。最后,用线性支持向量机(SVM)通过Bootstrapping的方式训练,得到判别模型。在INRIA人体库上的测试表明,检出率在误检率(FPPW)为10-4时由原始的89%提高到95%,单窗口检测速度由0.625ms提高到0.533ms。本文将纹理特征加入原始描述轮廓的HOG特征中,排除了部分梯度干扰信息造成的误检,提高了检出率。