一类随机需求VRP的混合粒子群算法研究

被引:15
作者
陆琳
谭清美
机构
[1] 南京航空航天大学经济与管理学院
关键词
算法; 路径; 优化; 局部搜索;
D O I
暂无
中图分类号
TP301.6 [算法理论];
学科分类号
081202 ;
摘要
针对一类随机需求车辆路径问题(stochastic vehicle routing problem,SVRP),结合现实生活中长期客户服务记录所隐含的统计性知识构建新的统计学模型,并将种群搜索与轨迹搜索算法相结合提出了一种新的混合粒子群优化算法。该算法通过引入导引式局部搜索,来减小粒子群搜索陷入局优的可能性以获得更优化解。仿真计算证明混合粒子群优化算法的有效性。同时,该算法也拓展了VRP的算法空间。
引用
收藏
页码:244 / 247
页数:4
相关论文
共 6 条
[1]  
Comparing neuro-dynamic programming algo-rithms for the vehicle routing problem with stochastic demands. Nicola Secomandi. Computers and Operations Research . 2000
[2]  
Comparing neuro-dynamic programming algo-rithms for the vehicle routing problem with stochastic demands. Nicola Secomandi. Computers and Operations Research . 2000
[3]  
A vehicle routing with stochastic demands. Bertsimas D J. Operations Research . 1992
[4]  
Stochastic vehicle routing. Gendreau M,Laporte G,Seguin R. European Journal of Operational Research . 1996
[5]  
Stochastic vehicle routing:a comprehen-sive approach. Stewart W R,Golden B L. European Journal of Operational Research . 1983
[6]  
An exact algorithm for the ve-hicle routing problem with stochastic demands and customers. Gendreau M,Laporte G,Séguin R. Transportation Science . 1995