HHT与神经网络在油气两相流流型识别中的应用

被引:24
作者
孙斌
张宏建
岳伟挺
机构
[1] 浙江大学控制系仪表所工业控制技术国家重点实验室
[2] 浙江大学控制系仪表所工业控制技术国家重点实验室 浙江杭州 佳木斯大学
[3] 黑龙江佳木斯
[4] 浙江杭州
关键词
两相流; 流型; 希尔伯特黄变换; 径向基函数神经网络;
D O I
暂无
中图分类号
TP274.2 [];
学科分类号
0804 ; 080401 ; 080402 ; 081002 ; 0835 ;
摘要
For acquiring the flow regime information of two-phase flow,a flow regime identification method using the Hilbert-Huang Transform (HHT) combined with Radial Basis Function neural networks was put forward.In this study,oil-gas two-phase flow in horizontal pipe was taken as the experimental object, differential pressure signals coming from Venturi tube were handled by Hilbert-Huang Transform,and characteristic vector closely associated with the flow regime were obtained.Flow regime was identified by using Radial Basis Function neural networks.While oil flux was in the range of 4.2 to 7.0 m3·h -1 and gas flux was 0 to 30 m3·h -1, this method showed high identification precision for bubble flow, slug flow, churn flow and annular flow et al.The experimental study showed that this method could precisely identify the flow regime and could be used easily.
引用
收藏
页码:1723 / 1727
页数:5
相关论文
共 4 条
[1]   气液两相流流量变化瞬态特性 [J].
江延明 ;
李玉星 ;
冯叔初 .
化工学报, 2003, (03) :321-326
[2]   测量水平管道液塞速度和长度的差压波动分析法 [J].
何利民 ;
郭烈锦 ;
陈学俊 .
化工学报, 2003, (02) :192-198
[3]   超声多普勒测速仪在液-固和气-液两相流测量中的应用 [J].
王铁峰 ;
王金福 ;
张欢 ;
金涌 .
化工学报, 2002, (04) :427-432
[4]   小波变换辨识流型的一种新方法研究 [J].
陈珙 ;
黄志尧 ;
王保良 ;
李海青 .
仪器仪表学报, 1999, (02) :117-120