动态场景下的交通标识检测与识别研究进展

被引:22
作者
刘华平 [1 ,2 ]
李建民 [1 ,2 ]
胡晓林 [1 ,2 ]
孙富春 [1 ,2 ]
机构
[1] 清华大学计算机科学与技术系
[2] 清华大学智能技术与系统国家重点实验室
关键词
动态场景; 交通标识; 检测; 识别;
D O I
暂无
中图分类号
TP391.41 [];
学科分类号
080203 ;
摘要
动态环境下交通标识的自动识别随着无人自主驾驶汽车对环境理解的要求提高引起了人们的高度关注。近年来研究人员从检测、跟踪和识别等方面展开了对这一问题的深入研究。针对动态场景下基于单个普通光学摄像机的交通标识检测与识别方法做一系统回顾。重点围绕交通标识的检测、识别,时序信息的利用等展开。此外,还对这一领域目前常用的数据集和评价方法做了具体介绍。最后指出了未来发展的趋势和方向。
引用
收藏
页码:493 / 503
页数:11
相关论文
共 9 条
[1]   压缩感知基本理论:回顾与展望 [J].
邵文泽 ;
韦志辉 .
中国图象图形学报, 2012, 17 (01) :1-12
[2]  
Man vs. computer: Benchmarking machine learning algorithms for traffic sign recognition[J] . J. Stallkamp,M. Schlipsing,J. Salmen,C. Igel.Neural Networks . 2012
[3]   Detection and classification of road signs in natural environments [J].
Nguwi, Yok-Yen ;
Kouzani, Abbas Z. .
NEURAL COMPUTING & APPLICATIONS, 2008, 17 (03) :265-289
[4]   Real-time classification of traffic signs [J].
Douville, P .
REAL-TIME IMAGING, 2000, 6 (03) :185-193
[5]  
Road sign classification using Laplace kernel classifier[J] . Pattern Recognition Letters . 2000 (13)
[6]   Robust method for road sign detection and recognition [J].
Piccioli, G ;
DeMicheli, E ;
Parodi, P ;
Campani, M .
IMAGE AND VISION COMPUTING, 1996, 14 (03) :209-223
[7]  
Traffic signs localisation forhighways inventory from a video camera on board a moving collec-tion van .2 Arnoul P,Viala M,Guerin J,et al. IEEE Intelligent Vehicles Symposium . 1996
[8]  
Decision fusionand reasoning for traffic sign recognition .2 Meuter M,Muller Schneiders S,Nunny C,et al. Proceedings ofInt.IEEE Conf.on Intelligent Transportation Systems . 2010
[9]  
Detection,tracking and recognitionof traffic signs from video input .2 Ruta A,Yongmin L,Liu X. Proceedings of Int.IEEEConf.on Intelligent Transportation Systems,Sch.of Inf.Syst . 2008