一种改进的SOM神经网络在污水处理故障诊断中的应用

被引:15
作者
岳宇飞
罗健旭
机构
[1] 华东理工大学自动化研究所
关键词
故障诊断; 聚类; 自组织映射; 帝国竞争算法;
D O I
10.14135/j.cnki.1006-3080.2017.03.015
中图分类号
TP183 [人工神经网络与计算]; X703 [废水的处理与利用];
学科分类号
摘要
自组织映射(SOM)神经网络初始权值的选取对神经网络的性能有重要的影响。采用改进的帝国竞争算法(IICA)优化局部权重失真指数(LWDI)寻优SOM神经网络的初始权值;利用改进后的SOM神经网络(IICA-SOM)对污水处理过程数据进行聚类和故障诊断。实验结果表明,与传统的SOM算法相比,IICA-SOM算法取得了更好的聚类效果,且故障诊断的误诊率更低。
引用
收藏
页码:389 / 396
页数:8
相关论文
共 8 条
  • [1] Imbalanced evolving self-organizing learning[J] . Qiao Cai,Haibo He,Hong Man.Neurocomputing . 2013
  • [2] Advanced monitoring platform for industrial wastewater treatment: Multivariable approach using the self-organizing map[J] . Mika Liukkonen,Ilkka Laakso,Yrj? Hiltunen.Environmental Modelling and Software . 2013
  • [3] Statistical Modeling of Contaminants Removal in Mature Integrated Constructed Wetland Sediments
    Dong, Yu
    Scholz, Miklas
    Harrington, Rory
    [J]. JOURNAL OF ENVIRONMENTAL ENGINEERING, 2012, 138 (10) : 1009 - 1017
  • [4] A novel self-organizing map (SOM) neural network for discrete groups of data clustering
    Ghaseminezhad, M. H.
    Karami, A.
    [J]. APPLIED SOFT COMPUTING, 2011, 11 (04) : 3771 - 3778
  • [5] A combined measure for quantifying and qualifying the topology preservation of growing self-organizing maps
    Delgado, Soledad
    Gonzalo, Consuelo
    Martinez, Estibaliz
    Arquero, Agueda
    [J]. NEUROCOMPUTING, 2011, 74 (16) : 2624 - 2632
  • [6] Subtraction analysis based on self-organizing maps for an industrial wastewater treatment process[J] . M. Heikkinen,H. Poutiainen,M. Liukkonen,T. Heikkinen,Y. Hiltunen.Mathematics and Computers in Simulation . 2010 (3)
  • [7] Self-organizing map and clustering for wastewater treatment monitoring
    García, HL
    González, LM
    [J]. ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2004, 17 (03) : 215 - 225
  • [8] SELF-ORGANIZED FORMATION OF TOPOLOGICALLY CORRECT FEATURE MAPS
    KOHONEN, T
    [J]. BIOLOGICAL CYBERNETICS, 1982, 43 (01) : 59 - 69