基于频域系统辨识和支持向量机的桥梁状态监测方法

被引:12
作者
樊可清
倪一清
高赞明
机构
[1] 五邑大学信息学院
[2] 香港理工大学土木及结构工程学系
关键词
系统辨识; 桥梁状态监测; 支持向量机; 一类学习算法; 模态参数辨识;
D O I
暂无
中图分类号
TP274 [数据处理、数据处理系统];
学科分类号
0804 ; 080401 ; 080402 ; 081002 ; 0835 ;
摘要
随着大跨度悬索、斜拉桥的增加,保障桥梁安全、降低维护费用成为交通管理以及政府部门关注的问题。针对损伤样本难以获得的实际情况,将桥梁状态监测问题作为模式识别中的“一类学习”问题处理。桥梁模式特征获取过程是“只有输出响应”的系统辨识问题,考虑到监测系统需要在线工作的特点,提出运用概念直观、结果可靠且便于自动实现的CMIF系统辨识方法作为获取模式特征的工具。为了获得足够敏感的异常报警判别函数,采用了基于支持向量机的一类学习算法,这种方法在得到很高灵敏性的同时,可以方便地权衡敏感性和泛化性能之间的矛盾。用香港汀九桥794小时实测数据对所采用的算法进行验证,证明了算法的有效性和实用性,其结果可供设计类似监测系统时参考。
引用
收藏
页码:25 / 30
页数:6
相关论文
共 4 条