土工极限平衡问题的非线性有限元数值分析

被引:20
作者
赵少飞
栾茂田
吕爱钟
机构
[1] 大连理工大学土木水利学院岩土工程研究所,大连理工大学土木水利学院岩土工程研究所,山东科技大学土木建筑学院辽宁大连山东科技大学土木建筑学院,山东泰安,辽宁大连大连理工大学海岸和近海工程国家重点实验室,辽宁大连中国科学院武汉岩土力学研究所,湖北武汉,山东泰安
关键词
有限元法; 非关联流动法则; 地基承载力; 边坡稳定性;
D O I
10.16285/j.rsm.2004.s2.024
中图分类号
TU443 [膨胀性土与地基];
学科分类号
081401 ;
摘要
考虑非关联流动法则, 采用几类低阶单元对条形基础下地基的极限承载力进行了二维有限元数值分析。计算表明,基于四节点四边形等参单元的有限元分析结果能够较好地吻合 Prandtl 理论解, 且能保证数值计算的稳定性。同时,基于Mohr-Coulomb 破坏准则和强度折减方法, 对于边坡稳定性进行了有限元计算, 建议采用无量纲位移 Eδmax/γH2 随强度折减系数变化的关系曲线上位移陡然增大时所对应的强度折减系数作为边坡的稳定安全系数, 克服了当前强度折减有限元数值计算中关于收敛标准确定的人为不确定性, 即使采用四节点四边形单元也能够保证数值解的良好收敛性。
引用
收藏
页码:121 / 125
页数:5
相关论文
共 3 条
[1]   有限元强度折减系数法计算土坡稳定安全系数的精度研究 [J].
张鲁渝 ;
郑颖人 ;
赵尚毅 ;
时卫民 .
水利学报, 2003, (01) :21-27
[2]  
ABAQUS/Standard有限元软件入门指南[M]. 清华大学出版社 , 庄茁等译, 1998
[3]   COMPUTATION OF COLLAPSE LOADS IN GEOMECHANICS BY FINITE-ELEMENTS [J].
GRIFFITHS, DV .
INGENIEUR ARCHIV, 1989, 59 (03) :237-244