利用数学形态学和方向窗的小波域双重局部维纳滤波图像去噪算法

被引:7
作者
周祚峰
水鹏朗
机构
[1] 西安电子科技大学雷达信号处理国家重点实验室
关键词
图像去噪; 双重局部维纳滤波; 椭圆型方向窗; 数学形态学;
D O I
暂无
中图分类号
TP391.41 [];
学科分类号
080203 ;
摘要
基于小波的图像去噪算法是目前图像处理研究的一个热点。该文提出了一种结合椭圆型方向窗和数学形态学的小波域双重局部维纳滤波图像去噪算法。该算法同时利用了小波域子带的方向信息和图像本身所固有的几何结构:首先使用数学形态学把图像分成纹理区域和光滑区域两部分,然后结合椭圆型方向窗去估计小波域方向子带中每一点的信号方差,最后使用双重维纳滤波器对含噪图像进行去噪。实验结果表明该算法的去噪效果优于其它的采用二维可分离实小波进行图像去噪的算法。
引用
收藏
页码:885 / 888
页数:4
相关论文
共 11 条
[1]  
Bivariate shrinkage with local variance estimation. Sendur L,and Selesnick I W. IEEE Signal Processing Letters . 2002
[2]  
Low-complexity image denoising based on statistical modeling of wavelet coefficients. Mihcak M K,Kozinsev I,and Ramchandran K,et al. IEEE Signal Processing Letters . 1999
[3]  
Image denoising using local contextual hidden Marcov model in the wavelet domain. Fan G,and Xia X G. IEEE Signal Processing Letters . 2001
[4]  
Wavelet domain image denoising by thresholding and Wiener filtering. Kazubek M. IEEE Signal Processing Letters . 2003
[5]  
Wavelet-based denoising with nearly arbitrarily shaped windows. Eom I K,Kim Y S. IEEE Signal Processing Letters . 2004
[6]  
Digital Image Processing. Gonzalez R C,and Woods E W. . 1992
[7]  
Spatially adaptive denoising based on mixture modeling and interscale dependencies of wavelet coefficients. Eom I K,and Kim Y S. IEEE Int.Conf.Neural Networks & Signal Processing . 2003
[8]  
Image Denoising Algorithm via Doubly Local Wiener Filtering With Directional Windows in Wavelet Domain. Pengliang Shui. IEEE SIGNAL PROCESSING LETTERS, VOL. 12, NO. 10, OCTOBER . 2005
[9]  
Image denoising us-ing scale mixtures of Gaussians in the wavelet domain. Portilla J,Strela V,Wainwright M J,et al. IEEE Transactions on Image Processing . 2003
[10]  
Spatially adaptive wavelet thresholding with context modeling for image denoising. Chang S G,Yu Bin,Verserli M. IEEE Transactions on Image Processing . 2000