基于选路优化的改进蚁群算法

被引:14
作者
张毅
梁艳春
机构
[1] 吉林大学计算机科学与技术学院国家教育部符号计算与知识工程重点实验室
基金
高等学校博士学科点专项科研基金;
关键词
蚁群算法; 旅行商问题; 选路策略; 并行策略;
D O I
暂无
中图分类号
TP301.6 [算法理论];
学科分类号
摘要
蚁群算法在处理大规模优化问题时效率很低。为此对蚁群算法提出了基于选路优化的两点改进:(1)引入选路优化策略,减少了算法中蚁群的选路次数,显著提高了算法的执行效率。(2)在选路操作中,只根据当前城市的前C个距离最近的且未经过城市为候选城市计算选择概率,从而减少单个蚂蚁选路的计算量。尤其对于以往较难处理的大规模TSP问题,改进算法在执行效率上有明显的优势。模拟实验结果表明改进算法较之基本蚁群算法在收敛速度有明显提高。
引用
收藏
页码:60 / 63
页数:4
相关论文
共 13 条
[1]  
A method for solving optimization problem in continuous space by using ant colony algorithm. Chen L,Shen J,Qin L. Journal of Software . 2002
[2]  
A self-adaptive ant colony algo-rithm. Zhang J H,Gao Q S,Xu X H. Control Theory and Applications . 2000
[3]  
Ant system:an autocatalytic op-timizing process. Dorigo M,Maniezzo V,Colorni A. Technical Report . 1991
[4]  
An adaptive ant colony algorithm based on equilibrium of distribution. Chen L,Shen J,Qin L. Journal of Software . 2003
[5]  
An ant colony algorithm with mu-tation features. Wu Q H,Zhang J H,Xu X H. Journal of Computer Research&Development . 1999
[6]  
Ant system:optimization by a colony of cooperating agents. Dorige M,Maniezzo V,Colorni A. IEEE Transactions on Systems Man and Cybernetics . 1996
[7]  
The ant system:optimization by a colony of cooperating agents. Dorigo M,Maniezzo V,Colorni A. IEEE Transactions on Systems,Man,and Cybernetics.Part B . 1996
[8]  
An ant colony algorithm based partition algorithm for TSP. Wu B,Shi Z Z. The Chinese Journal . 2001
[9]  
Ant colony system:a cooperativelearning approach to the traveling salesman problem. Dorigo M,Gambardella L M. IEEE Transactions on Evolutional Comutation . 1997
[10]  
Hybrid ant colony algorithm for traveling salesman problem. Huang L,Zhou C G,Wang K P. Progress in Natural Science . 2003