一种利用像素分类的自适应小波图像降噪方法

被引:7
作者
楚恒
朱维乐
机构
[1] 电子科技大学电子工程学院
关键词
图像处理; 图像去噪; 像素分类; 小波变换;
D O I
10.16136/j.joel.2007.04.028
中图分类号
TP391.41 [];
学科分类号
080203 ;
摘要
提出了一种结合像素分类与小波变换的图像去噪方法。首先用常用方法获得初步去噪图像,并将其分割为若干图像块,分别计算每个图像块的空间频率。利用归一化的空间频率,对不同的图像块采用不同的阈值进行去噪,空间频率高的图像块采用较小的阈值,反之采用较大阈值去噪。实验结果表明:该方法可在初步去噪图像的基础上进一步提高图像去噪的效果,同时较好地保持图像细节;其去噪效果优于常用的小波图像去噪方法,峰值信噪比(PSNR)相对常用方法最高可提高3.4 dB。
引用
收藏
页码:482 / 486
页数:5
相关论文
共 14 条
[1]  
Feature-based wavelet shrinkagealgorithm for image denoising. Balster E J,Zheng Y F,Ewing R L. IEEE Transactions on Image Pro-cessing . 2005
[2]  
Multisensor Image Fusion Using theWavelet Transform. Li H,Manjunath B S,Mitra S K. Graphical Models . 1995
[3]  
Is there any texture in the image. Karu K,Jain A K,Bolle R M. Pattern Recognition . 1996
[4]  
Ideal spatial adaptation by waveletshrinkage. Donoho D L,Johnstone I M. Biometrika . 1994
[5]  
A wavelet-based image fusion tutorial. Pajares G,Cruz J M. Pat-tern Recognition . 2004
[6]  
A perceptually motivated three-component imagemodel-PartⅠ:description of the model. Ran X,Farvardin N. IEEE Transactions onImage Processing . 1995
[7]  
Low-complexity im-age denoising based on statistical modeling of wavelet coefficients. Mihack M K,Kozintsev I.Ramchandran K,et al. IEEE Signal Processing Letters . 1999
[8]  
Bayesian tree-structured imagemodeling using wavelet-domain hidden markov models. Romberg J K,Choi H,Baraniuk R G. IEEETransactions on Image Processing . 2001
[9]  
Classifying image pixels into shaped,smooth and texturedpoints. Chou W S. Pattern Recognition . 1999
[10]  
Adaptive wavelet threshold for image denoising. Chen Y,Han C. IEEE Electronics Letters . 2005