基于2DLDA与SVM的人脸识别算法

被引:3
作者
甘俊英
何思斌
机构
[1] 五邑大学信息学院
基金
广东省自然科学基金;
关键词
小波变换; 二维线性鉴别分析; 支持向量机; 人脸识别;
D O I
暂无
中图分类号
TP391.41 [];
学科分类号
080203 ;
摘要
二维线性鉴别分析(2DLDA)算法能有效解决线性鉴别分析(LDA)算法的"小样本"效应,支持向量机(SVM)具有结构风险最小化的特点,将两者结合起来用于人脸识别。首先,利用小波变换获取人脸图像的低频分量,忽略高频分量;然后,用2DLDA算法提取人脸图像低频分量的线性鉴别特征,用"一对多"的SVM多类分类算法完成人脸识别。基于ORL人脸数据库和Yale人脸数据库的实验结果验证了2DLDA+SVM算法应用于人脸识别的有效性。
引用
收藏
页码:1927 / 1929
页数:3
相关论文
共 13 条
  • [1] Face recognition by support vector ma-chines. GUO G,,LI S Z,CHAN K. IEEE International Conference on Automatic Face andGesture Recognition . 2000
  • [2] Fast support vec-tor machine training and classification on graphics processors. CATANZARO B,,SUNDARAMN,KEUTZER K. Proceedings of the 25th International Conference on Machine Learn-ing . 2008
  • [3] Two-dimensional linear discriminant analysis of principal componentvectors for face recognition. SANQUANASAT P,,ASDORNWISED W,JITAPUNKUL S,et al. IEEE International Conference onAcoustics,Speech and Signal Processing . 2006
  • [4] Face rec-ognition using lda-based algorithms. LUJ,PLATANIOTIS K N,VENETSANOPULAOS A N. IEEE Transactions on Neu-ral Networks . 2003
  • [5] Non-iterative two-dimensional linear dis-criminant analysis for face recognition. INOUE K,,URAHAMAK. IPSJSIG Technical Report . 2006
  • [6] Using support vector machines toenhance the performance of Bayesian face recognition. LI ZHIFENG,TANG XIAOOU. IEEETransactions on Information Forensics and Security . 2007
  • [7] Frequency-based non-rigid motion analysis. Nastar C,Ayache N. IEEE Transactions on Pattern Analysis and Machine Intelligence . 1996
  • [8] An introduction to support vector machines and other kernel-based learning methods. Cristianini N,Shawe-Taylor J. . 2000
  • [9] A novel method for Fisher discriminant analysis. Yong Xu,Jing-Yu Yang,Zhong Jin. Pattern Recognition . 2004
  • [10] Face recognition using wavelettransform and locally discriminating projection. SUJARITHA M,,ANNADURAI S. InternationalConference on Computational Intelligence and Multimedia Applica-tions . 2007