运用非线性系统理论确定电力系统暂态稳定域的一种新方法

被引:32
作者
李颖晖
张保会
机构
[1] 西安交通大学电气学院电力系!西安
基金
高等学校博士学科点专项科研基金;
关键词
电力系统暂态稳定域; 不变稳定流形; 不变稳定子空间;
D O I
10.13334/j.0258-8013.pcsee.2000.01.011
中图分类号
TM712 [电力系统稳定];
学科分类号
摘要
从非线性系统稳定域边界理论出发,论述了非线性系统的不变稳定流形与其映射后的线性系统的不变稳定子空间的关系,从而从理论上确定了非线性系统的稳定边界;推导了特征值全为实数和包含任意对复数情况下的非线性映射公式;描述了经大扰动后将电力系统的一组微分方程化为规范形(Normal Form) 的方法,从理论上给出了平衡点附近的局部稳定边界。由所有不稳定平衡点附近的局部稳定边界构成故障后电力系统的完整的稳定边界,并由持续故障轨线与主导不稳定平衡点处的局部稳定边界的交点确定了临界切除时间。
引用
收藏
页码:42 / 45
页数:4
相关论文
共 9 条
  • [1] Nonlinear measures of modemachineparticition. Starrett S K,Fouad A A. IEEETranson Power System . 1998
  • [2] Stability region of nolinear autonomous dynamic systems. Chiang H D,Hirsch M,Wu F F. IEEE Transactions on Automatic Control . 1988
  • [3] Arnold,V. I. Geometrical Methods in the Theory of Ordinary Differential Equations . 1993
  • [4] Investigation of modal interaction and its effects on control performance in stressed power systems using normal forms of vector fields. CM Lin,V Vittal,W Kliemann,AA Fouad. IEEE Trans Power Syst . 1996
  • [5] Wiggins,S. Introduction to applied nonlinear dynamical systems and chaos . 1990
  • [6] Application of the normal form vector fields to predict interactea seperation in power system. Thapar J,Vittal V,Kliemann W,Fouad A A. IEEE Transactions on Power Systems . 1997
  • [7] Stability boundary approximation of a power system using the real normal form of vector fields. Saha S,Fouad A A,Kliemann W H,Vittal V. IEEE Transactions on Power Systems . 1997
  • [8] Analytical Results on Direct Methods for Power System Transient Stability Analysis:Advances in Control Dynamic Systems. H.D.Chiang. . 1991
  • [9] Foundations of direct method for power system transient stability analysis. Chiang H D,Wu F F,Varoiya P P. IEEE Trans on CS . 1987