为了实现水电机组自动故障预警,提出一种基于概率分布估计的新方法。与以往试图学习机组故障样本方法不同的是,该方法学习机组正常状态而非故障状态,它把机组振动看作符合某一概率分布的独立同分布观测样本,利用Sch?lkopf 提出的单类支持向量机方法得到机组振动模式,并由此模式可以对测试观测进行预警。该方法直接对训练数据进行处理,不需进行复杂的预处理,并且简单,快速,并且对于水电机组的数据缺失和运行参数变化具有很好的适应能力。对甘肃大峡实际观测数据的仿真结果表明,概率分布估计可以有效的学习机组振动模式并对机组故障进行预警,为故障预警提出了一种新途径。