Tobit方差分量模型的极大似然估计

被引:1
作者
周兴才 [1 ]
刘心声 [2 ]
机构
[1] 安徽铜陵学院基础教育系
[2] 南京航空航天大学高新技术研究院理学院
关键词
Tobit模型; 方差分量模型; 极大似然估计; MCEM算法;
D O I
暂无
中图分类号
O212.1 [一般数理统计];
学科分类号
摘要
本文对非负的且含有大量零的混合类型数据提出了Tobit方差分量模型,许多很有用的Tobit模型是我们模型的特例.我们运用MCEM算法给出了模型的极大似然估计,其中E-步运用了Gibbs抽样的Monte Carlo模拟,并用Louis方法得到参数的标准误差估计.
引用
收藏
页码:239 / 248
页数:10
相关论文
共 8 条
[1]  
线性模型的理论及其应用[M]. 安徽教育出版社 , 王松桂著, 1987
[2]   A Monte Carlo EM method for estimating multinomial probit models [J].
Natarajan, R ;
McCulloch, CE ;
Kiefer, NM .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2000, 34 (01) :33-50
[3]  
Estimation of tobit-type models with individual specific effects[J] . Bo E. Honore,Ekaterini Kyriazidou,J. L. Powell.Econometric Reviews . 2000 (3)
[4]  
Bureaucratic behavior modeled by reduced-rank regression: The case of expenditures from the Soviet state budget[J] . John P. Burkett.Journal of Economic Behavior and Organization . 1998 (1)
[5]  
Genetic tobit factor analysis: Quantitative genetic modeling with censored data[J] . Niels G. Waller,Bengt O. Muthén.Behavior Genetics . 1992 (3)
[6]   FINDING THE OBSERVED INFORMATION MATRIX WHEN USING THE EM ALGORITHM [J].
LOUIS, TA .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1982, 44 (02) :226-233
[7]  
Education, Unemployment, and Earnings[J] . Orley Ashenfelter,John Ham.Journal of Political Economy . 1979 (5)
[8]  
Tools for statistical inference: methods for the exploration of posterior distributions and likelihood functions, 2nd Ed. Tanner MA. New York: Springer-Verlag . 1993