共 16 条
[1]
The class imbalance problem:A systematic study. Japkowicz N,Stephen S. Intelligent Data Analysis . 2002
[2]
Combining diversi-ty and classification accuracy for ensemble selection in random subspaces. Ko A H R,Sabourin R,de Souza Britto A. Proceedings of the International Joint Conference on Neural Networks (IJCNN’’06) . 2006
[3]
Combining pattern classifiers:methods and algorithms. Kuncheva L I. . 2004
[4]
Probabilistic Outputs for Support Vector Machines and Comparisons to Regularized Likelihood Methods. Platt J C. Advances in Large Margin Classifiers . 1999
[5]
Cost-sensi-tive learning methods for imbalanced data. THAI-NGHE N,GANTNER Z,SCHMIDT-THIEME L. Proc of InternationalJoint Conference on Neural Networks . 2010
[6]
10 Challenging problems in data mining re-search. YANG Q,WU X. International Journal of Information Technology and De-cision Making . 2006
[7]
Locally application of random subspace withsimple Bayesian classifier. KOTSIANTIS S B. International Journal of Data Min-ing,Modelling and Management . 2009
[9]
统计学习理论的本质[M]. 清华大学出版社 , (美)VladimirN.Vapnik著, 2000
[10]
Creating and meas-uring diversity in multiple classifier systems using support vector da-ta description. HAGHIGHI M S,VAHEDIAN A,YAZDI H S. Applied Soft Computing . 2011