分形无标度区的一种自动识别方法

被引:8
作者
王成栋
凌丹
苗强
机构
[1] 电子科技大学机械电子工程学院
关键词
分形; 关联维数; 无标度区; 自动识别;
D O I
暂无
中图分类号
TH165.3 [];
学科分类号
080202 ;
摘要
GP算法求分形关联维数时,双对数曲线的线性区间(无标度区)的识别十分关键。经典的GP算法中无标度区的识别主要依靠人工经验完成,同一条曲线,不同的人可能得到不同的无标度区,从而导致估算的关联维数存在较大差别。根据无标度区范围内的双对数曲线近似为一条直线段,其二阶导数应在0附近上下微幅波动的特点,提出了一种由计算机对无标度区进行自动识别的方法。该方法物理意义清晰,便于在计算机上编程实现。用Lorenz方程X轴的数据对方法进行了验证,计算结果表明,提出的方法可以有效地识别无标度区。
引用
收藏
页码:9 / 12+27 +27
页数:5
相关论文
共 14 条
[1]   化学体系中时间序列非线性特征提取及MATLAB实现 [J].
雷惊雷 ;
王超 ;
李凌杰 ;
阴宛珊 ;
巫生茂 ;
杨光杰 .
计算机与应用化学, 2011, 28 (02) :129-133
[2]   关联维数快速算法及其在机械故障诊断中的应用 [J].
庞茂 ;
吴瑞明 ;
谢明祥 .
振动与冲击, 2010, 29 (12) :106-109+241
[3]   混沌时间序列关联维数计算中无标度区间识别的新方法 [J].
姬翠翠 ;
朱华 ;
江炜 .
科学通报, 2010, (31) :3072-3079
[4]   转子系统分形故障诊断中无标度区的自动识别 [J].
唐贵基 ;
杜必强 ;
王松岭 .
动力工程, 2009, 29 (05) :440-444
[5]   基于ln C(r)~ln r关系曲线最小曲率值的无标度区的识别 [J].
唐依民 ;
雷鸣 ;
聂重军 ;
肖江 .
湖南科技大学学报(自然科学版), 2008, 23 (04) :48-52
[6]   关联维数无标度区确定方法及诊断应用 [J].
李奎为 ;
胡瑾秋 ;
张来斌 ;
王朝晖 ;
段礼祥 .
石油机械, 2007, (04) :43-45+71
[7]   分形理论应用中无标度区自动识别方法 [J].
秦海勤 ;
徐可君 ;
江龙平 .
机械工程学报, 2006, (12) :106-109
[8]   分形研究中无标度区的计算机识别 [J].
党建武 ;
施怡 ;
黄建国 .
计算机工程与应用, 2003, (12) :25-27
[9]   分形分析中的无标度区确定问题 [J].
巫兆聪 .
测绘学报, 2002, (03) :240-244
[10]   一种新的混沌识别方法(Ⅰ) [J].
李擎 ;
郑德玲 ;
赵星浩 ;
刘东方 .
北京科技大学学报, 1999, (02) :198-201