采用高斯拟合算法对光谱进行特征提取,利用拟合得到的特征参量表征光谱信息,并结合多元校正方法对光谱模型进行优化和解释,建立了样品快速准确的测定方法。实验以玉米活体叶片为研究对象,建立叶片光谱与叶绿素含量之间的关系模型,采用三个高斯峰对原始光谱的1551个数据拟合后,光谱数据转换为9个高斯特征量(约为整个波段的0.58%),进而利用该高斯特征量来预测叶绿素含量。实验结果显示,采用高斯拟合分别与偏最小二乘法和主成分回归结合建模,其预测集相关系数分别为0.960和0.962;不采用高斯拟合算法而直接采用偏最小二乘法和主成分回归对全光谱建模,其预测集相关系数分别为0.957和0.919。可见,将高斯拟合算法运用到定量分析模型中是可行的,该方法不仅简化了模型参数,而且提高了模型的可解释性。