MOOC(Massive Open Online Course)的核心属性之一是"课程"(Course),因此"完成率"或"流失率"始终是其发展中绕不开的话题。借由完成率问题引发的一系列深入讨论和研究,例如流失问题的预测分析,取得了丰富的研究成果,对于增进我们对MOOC研究的认识和相关教学理论的理解都具有积极作用。但由于该领域内还缺乏对预测分析的系统综述,我们对这个问题的研究全貌、研究局限以及未来的研究方向并不明晰。因此,本文通过综述24篇最近五年相关的高质量文献,试图回答三个问题:哪些预测指标是有效的?哪些算法模型是相对较好的?不同模型的节俭性和耐用性如何?通过回答这些问题,本文梳理了有效的预测指标体系,对比了不同算法模型的有效性,并检验了模型的节俭性和耐用性;更进一步,本文通过讨论研究的理性观、实践意义和开展跨领域对话,指出了未来研究可能的研究取径、研究方向和研究重点。
[9]
Temporal Predication of Dropouts in MOOCs: Reaching the Low Hanging Fruit through Stacking Generalization[J] . Wanli Xing,Xin Chen,Jared Stein,Michael Marcinkowski.Computers in Human Behavior . 2015
[9]
Temporal Predication of Dropouts in MOOCs: Reaching the Low Hanging Fruit through Stacking Generalization[J] . Wanli Xing,Xin Chen,Jared Stein,Michael Marcinkowski.Computers in Human Behavior . 2015