基于双树复小波变换的轴承故障诊断研究

被引:30
作者
艾树峰
机构
[1] 浙江传媒学院
基金
浙江省自然科学基金;
关键词
故障诊断; 双树复小波变换; 轴承; 幅值解调; 信号处理;
D O I
暂无
中图分类号
TH133.3 [轴承]; TH165.3 [];
学科分类号
摘要
提出了一种基于双树复小波变换解调技术的轴承故障诊断新方法。该方法利用双树复小波变换具有近似平移不变性、避免频率混叠和有效降噪的优点,首先对轴承故障振动信号进行双树复小波分解和重构,将振动信号分解成实部和虚部,然后计算振动信号的双树复小波幅值包络和包络谱。齿轮箱轴承故障振动实验信号的分析表明,该方法能在强噪声环境下准确提取轴承故障产生的周期性瞬态冲击信号,能有效消除频率混叠现象和强噪声的影响,能有效识别轴承内圈和外圈故障。
引用
收藏
页码:2446 / 2451
页数:6
相关论文
共 7 条
[1]   双树复小波包变换语音增强新算法 [J].
王娜 ;
郑德忠 ;
刘永红 .
传感技术学报, 2009, 22 (07) :983-987
[2]   阶次包络谱在轴承故障诊断中的应用 [J].
李辉 ;
郑海起 ;
唐力伟 .
机械强度, 2007, (03) :351-355
[3]  
Local fusion of complex dual-tree wavelet coefficients based face recognition for single sample problem[J] . K. Jaya Priya,R.S. Rajesh.Procedia Computer Science . 2010
[4]   Hilbert-Huang transform and marginal spectrum for detection and diagnosis of localized defects in roller bearings [J].
Li, Hui ;
Zhang, Yuping ;
Zheng, Haiqi .
JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2009, 23 (02) :291-301
[5]   Application of discrete wavelet transform for detection of ball bearing race faults [J].
Prabhakar, S ;
Mohanty, AR ;
Sekhar, AS .
TRIBOLOGY INTERNATIONAL, 2002, 35 (12) :793-800
[6]  
Wavelet decomposition of vibrations for detection of bearing-localized defects[J] . C. James Li,Jun Ma.NDT and E International . 1997 (3)
[7]  
Enhancement of signal denoising and multiple fault signatures detecting in rotating machinery using dual-tree complex wavelet transform. Wang Yanxue,He Zhengjia,Zi Yanyang. Journal of Mechanical Systems . 2010