学术探索
学术期刊
新闻热点
数据分析
智能评审
立即登录
基于Bi-LSTM的医疗事件识别研究
被引:17
作者
:
论文数:
引用数:
h-index:
机构:
侯伟涛
姬东鸿
论文数:
0
引用数:
0
h-index:
0
机构:
武汉大学计算机学院
姬东鸿
机构
:
[1]
武汉大学计算机学院
来源
:
计算机应用研究
|
2018年
/ 35卷
/ 07期
关键词
:
信息抽取;
医疗事件识别;
深度学习;
双向LSTM;
D O I
:
暂无
中图分类号
:
TP391.1 [文字信息处理];
学科分类号
:
摘要
:
文本的信息抽取及属性识别是文本语义分析的一项重要任务。在已有工作基础上提出了双向LSTM与MLP集成的深度神经网络模型。在2016年Sem Eval的医疗事件抽取以及事件属性预测任务中,该模型将医疗文本的词性以及命名实体的描述信息当做附加属性,使用双向LSTM神经网络学习文本的隐藏特征,解决了传统方法通用性不强以及无法捕捉前后文隐含信息的缺点,再使用全连接的方式去判断候选词汇是否属于医疗事件以及识别其相关属性。实验结果表明,提出的神经网络模型对医疗文本的抽取效果优于以往学者的方法。
引用
收藏
页码:1974 / 1977
页数:4
相关论文
共 1 条
[1]
基于LSTM的语义关系分类研究.[D].胡新辰.哈尔滨工业大学.2015, 02
←
1
→
共 1 条
[1]
基于LSTM的语义关系分类研究.[D].胡新辰.哈尔滨工业大学.2015, 02
←
1
→