基于混合神经网络的风电场风资源评估

被引:10
作者
王娜
周有庆
邵霞
机构
[1] 湖南大学电气与信息工程学院
关键词
风电场; 风资源评估; 混合神经网络; 自适应粒子群优化;
D O I
10.19595/j.cnki.1000-6753.tces.2015.14.050
中图分类号
TM614 [风能发电];
学科分类号
0807 ;
摘要
准确的风资源评估是风电场规划和设计的前提。为了提高风电场风资源评估的精度,提出了一种基于混合神经网络的风电场风资源评估方法,该方法可综合利用风电场附近区域信息进行评估。首先根据风电场和附近参考气象站的同期数据建立基于混合神经网络的相关模型,训练得到神经网络的权值参数,为了提高神经网络的学习能力和避免陷入局部最优,混合神经网络采用不同的训练方法,并且采用自适应粒子群算法进行优化;再将参考气象站的历史观测数据应用到该模型中,即可得到风电场的长期风速特性,在此基础上进行风资源评估参数的计算。仿真结果表明该方法具有较高的精度。
引用
收藏
页码:370 / 376
页数:7
相关论文
共 9 条
[1]   风电场风能资源评价两个新参数——相当风速、有功风功率密度 [J].
杨振斌 ;
朱瑞兆 ;
薛桁 .
太阳能学报, 2007, (03) :248-251
[2]  
GB/T 18710-2002. 风电场风能资源评估方法[S]. 2002
[3]  
A new low-correlation MCP (measure-correlate-predict) method for wind energy forecasting[J] . Ali Dinler.Energy . 2013
[4]  
Very fast training neural-computation techniques for real measure-correlate-predict wind operations in wind farms[J] . B. Saavedra-Moreno,S. Salcedo-Sanz,L. Carro-Calvo,J. Gascón-Moreno,S. Jiménez-Fernández,L. Prieto.Journal of Wind Engineering & Industrial Aerodynamics . 2013
[5]   A new probabilistic method to estimate the long-term wind speed characteristics at a potential wind energy conversion site [J].
Carta, Jose A. ;
Velazquez, Sergio .
ENERGY, 2011, 36 (05) :2671-2685
[6]  
Comparison between ANNs and linear MCP algorithms in the long-term estimation of the cost per kWh produced by a wind turbine at a candidate site: A case study in the Canary Islands[J] . Sergio Velázquez,José A. Carta,J.M. Matías.Applied Energy . 2011 (11)
[7]  
Influence of the input layer signals of ANNs on wind power estimation for a target site: A case study[J] . Sergio Velázquez,José A. Carta,J.M. Matías.Renewable and Sustainable Energy Reviews . 2010 (3)
[8]  
Use of Bayesian networks classifiers for long-term mean wind turbine energy output estimation at a potential wind energy conversion site[J] . José A. Carta,Sergio Velázquez,J.M. Matías.Energy Conversion and Management . 2010 (2)
[9]  
Comparison of the performance of four measure–correlate–predict algorithms[J] . Anthony L. Rogers,John W. Rogers,James F. Manwell.Journal of Wind Engineering & Industrial Aerodynamics . 2005 (3)