图像噪声方差的小波域估计算法

被引:5
作者
李天翼
王明辉
吴亚娟
常化文
机构
[1] 四川大学计算机学院
关键词
小波变换; 方差估计; 小波系数;
D O I
暂无
中图分类号
TP391.41 [];
学科分类号
080203 ;
摘要
为提高噪声方差估计准确度,在Donoho经典估计方法基础上,提出一种基于原始图像小波系数估计的算法.该算法通过挖掘小波尺度间的相关性,估计出原始图像小波系数,将含噪图像小波系数与之相减,得到较纯粹的噪声系数,再利用Donoho的方法进行估计.实验结果表明,该方法性能明显优于传统方法,尤其在噪声幅度较小或图像细节较丰富时性能表现更佳.
引用
收藏
页码:1402 / 1407
页数:6
相关论文
共 14 条
[1]  
Noise Estimation from a Single Image. C. Liu,WT Freeman,R. Szeliski,and S.B. Kang. Computer Vision and Pattern Recognition, 2006 IEEE Computer Society Conference on . 2006
[2]  
A Wavelet Tour of Signal Processing. Stephane Mallat. . 1998
[3]  
A joint inter-and intrascale statistical model for Bayesian wavelet based image denoising. A.Pizurica,W.Philips,I.Lemahieu,et al. IEEE Transactions on Image Processing . 2002
[4]  
Estimating noiseparameter based on the wavelet coefficients estimation oforiginal image. Li Tianyi,Wang Minghui,Li Tianjian. 2010 International Conference onChallenges in Environmental Science and Computer Engi-neering . 2010
[5]  
Image Denoising Based on Wavelet Transform. Sanping Jiang. . 2009
[6]  
Modern Signal processing. Zhang,X. D. . 1995
[7]  
Digital Image Processing Using MATLAB. Rafael C Gonzalez,Richard E Woods,Steven L.Eddins. . 2005
[8]  
Denoising via soft_thresholding. Donoho D L. IEEE Transactions on Information Theory . 1995
[9]  
Ideal Spatial Adaption by Wavelet Shrinkage. Donoho L,Johnstone IM. Biometrika . 1994
[10]  
Abayesian framework for noise covariance estimation usingthe facet model. NADADUR D,HARALICK R M,GUSTAFSON D E. IEEE Transactions on ImageProcessing . 2005