一个求解大型线性方程组的自适应CGNR算法

被引:11
作者
李春光
徐成贤
机构
[1] 郑州大学数学系
[2] 西安交通大学理学院 郑州
[3] 西安
关键词
线性方程组; CGNR方法; 自应用算法; 混合算法; 稳健性;
D O I
暂无
中图分类号
O241.6 [线性代数的计算方法];
学科分类号
070102 ;
摘要
提出了一个求解大型非对称线性方程组的混合迭代算法 ,是基于法方程的自适应CGNR算法。该算法利用了多项式预条件和残差多项式估计特征值等技术 ,保持了CGNR方法原有的稳健性 ,又加快了迭代收敛速度
引用
收藏
页码:71 / 77
页数:7
相关论文
共 9 条
[1]  
A comparsion of adaptive Chebyshev and least squares polynomial preconditionings for Hermitian positive definite linear systems. Ashby S F,Manteuffel T A,Otto J S. SIAM Journal on Scientific and Statistical Computing . 1992
[2]  
CGNR is an error reducing algorithm. Li Chuanguang. SIAM Journal on Scientific Computing . 2001
[3]  
An iterative solution method for linear systems of which the coefficient matrix is a symmetric M-matrix. Meijerink J,Vorst van der H A. Mathematics of Computation . 1977
[4]  
How fast are nonsymmetric matrix iterations. Nachtigal N M,Reddy S C,Trefethen L N. SIAM Journal on Matrix Analysis and Applications . 1992
[5]  
Implementation of an adaptive algrithm for Richardson’s method. Saylor P E,Smolarski D C. Linear Algebra and Its Applications . 1991
[6]  
GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems. Saad Y,Schultz M. SIAM Journal on Scientific and Statistical Computing . 1986
[7]  
Error-minimizing Krylov subspace methods. Weiss R. SIAM Journal on Scientific Computing . 1994
[8]  
Preconditioning techniques for nonsymmetric and indefinite linear systems. Saad Y. Journal of Computational and Applied Mathematics . 1988
[9]  
Methods of conjugate gradients for solving linear systems. Hestenes M R,Stiefel E. Journal of Research of the National of Standards and Technology . 1952