基于改进磷虾群算法的SVDD参数优化

被引:8
作者
孔祥鑫
周炜
王晓丹
机构
[1] 不详
[2] 空军工程大学防空反导学院
[3] 不详
关键词
支持向量数据描述; 改进磷虾群算法; 参数优化; 精英选择和保留策略;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
支持向量数据描述(SVDD)是构造单类数据描述的分类算法,惩罚参数C和核参数σ作为影响SVDD分类效果的关键,其合理选取一直是个难点。针对这一问题,提出了一种基于改进磷虾群算法的SVDD参数优化算法(IKH-SVDD)。依据仿真实验,分析参数C和σ对描述边界的影响;引入磷虾群算法并分析其优劣,通过在随机扩散行为中定义扰动因子,增强算法的全局搜索能力;将一种新的精英选择和保留策略引入迭代过程,提高算法的收敛精度;将改进的磷虾群算法引入SVDD参数优化过程,构建了IKH-SVDD参数优化模型。基于UCI标准数据库进行实验并与其他几种参数优化算法进行比较,结果表明了IKH-SVDD算法具有更高的分类准确性。
引用
收藏
页码:137 / 142+216 +216
页数:7
相关论文
共 12 条