共 6 条
基于递归定量分析与高斯混合模型的齿轮故障识别
被引:14
作者:
肖涵
李友荣
吕勇
机构:
[1] 武汉科技大学机械自动化学院冶金装备及其控制教育部重点实验室
来源:
关键词:
递归图;
递归定量分析;
高斯混合模型;
故障识别;
D O I:
10.16385/j.cnki.issn.1004-4523.2011.01.018
中图分类号:
TH132.41 [齿轮及齿轮传动];
TH165.3 [];
学科分类号:
摘要:
针对递归图只能对信号进行定性分析,不利于其深入应用的缺点,应用递归定量分析方法对各种故障模式振动信号进行定量分析。采用确定率和层流率组成齿轮故障识别的特征向量,并结合高斯混合模型实现齿轮故障模式识别。以齿轮故障实验台上所测取的实验数据为对象,分别采用Re-substitution检验法,Jackknife检验法和Inde-pendent dataset检验法对提出的方法和RBF人工神经网络分类算法进行检验。结果表明,递归定量分析与高斯混合模型相结合应用于齿轮故障模式识别具有更高的识别率。
引用
收藏
页码:84 / 88
页数:5
相关论文