谷物识别中对神经网络的优化(英文)

被引:4
作者
蒋德云
张弓
机构
[1] 安徽农业大学农业工程系,曼尼托巴大学生物系统工程系合肥,温尼伯,MB,RTV,加拿大
关键词
神经网络; 优化; 辨识; 非线性; 纹理; 谷物;
D O I
暂无
中图分类号
TP183 [人工神经网络与计算];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
主要讨论了在谷物纹理识别中对神经网络的优化。通过比较优化神经网络和非优化神经网络的输入、输出之间的非线性联系 ,可知优化神经网络能够更迅速、准确地进行纹理识别。同时 ,该文还评价了优化方法的有效性。
引用
收藏
页码:231 / 234
页数:4
相关论文
共 10 条
[1]  
Grain classification with combined texture model. Zhang Gong,Jayas D S,Jiang Deyun,et al. Transactions of the CSAE .
[2]  
Neural network models for predicting flowering and physiological maturity of soybean. Elizondo D A,McClendon R W,Hoogenboom G. Transactions of the ASME . 1994
[3]  
Discrimination of wheat and non-wheat components in grain samples by image analysis. Zayas I,Pomeranz Y,Lai F S. Cereal Chemistry . 1989
[4]  
Snack quality evaluation method based on image features and neural network prediction. Sayeed M S,Whittaker A D,Kehtarnavaz N D. Transactions of the ASME . 1995
[5]  
A dedicated wheat grading system. Keefe P D. Plant Varieties and Seeds . 1992
[6]  
Detection of blood spots and dirt stains in eggs using computer vision and neural networks. Patel V C,McClendon R W,Goodrum J W. Transactions of the ASME . 1996
[7]  
Detection of blood spots and dirt stains in eggs using computer vision and neural networks. Patel V C,McClendon R W,Goodrum J W. Transactions of the ASME . 1996
[8]  
Discrimination of wheat class and variety by digital image analysis of whole grain samples. Neuman M,Sapirstein H D,Shwedyk E,et al. Journal of Cereal Science . 1987
[9]  
Classification of various grains using optical properties. Majumdar S,Jayas D S,Hehn J L,et al. Canadian Agricultural Engineering . 1996
[10]  
Performance of skidder tires in swamps — comparison between statistical and neural network models. Hassan A E,Tohmaz A S. Transactions of the ASME . 1995