基于社群挖掘的用户个性化信息推荐方法研究

被引:5
作者
余以胜 [1 ]
徐剑彬 [2 ]
刘鑫艳 [1 ]
机构
[1] 华南师范大学经济与管理学院
[2] 顺丰控股(集团)股份有限公司
关键词
社群挖掘; 个性化推荐; 情报学科建设;
D O I
暂无
中图分类号
TP391.3 [检索机];
学科分类号
摘要
当前情报学科的发展目前呈现出多维度、跨学科等特点,而结合个性化信息推荐算法,可为其注入新活力。本文的研究是为了提高个性化信息推荐的效果,解决个性化信息推荐的稀疏性问题,以期可以促进情报学科的新发展,为此,我们引入了社群挖掘概念,得到TO算法,在协同过滤或关联规则推荐之前先对数据进行社团划分,通过对Book-crossing公开数据集的验证分析,并与对照算法相比,我们发现TO算法的准确率和调和度都最佳。
引用
收藏
页码:1093 / 1098
页数:6
相关论文
共 21 条
[11]  
Fast algorithm for detecting community structure in networks. Newman,MEJ. Physical Review E Statistical, Nonlinear and Soft Matter Physics . 2004
[12]  
Finding Community Structure in Very Large Networks. Clauset A,Newman M E J,Moore C. http://www.ece.unm.edu/ifis/papers/community-moore.pdf . 2008
[13]  
Personalized recommendation based on partial similarity of interests. M.H.Yang,Gu Z.M. Advanced Data Mining and Applications Proceedings . 2006
[14]  
Mining frequent patterns without candidate generation. Jiawei Han,Jian Pei,Yiwen Yin. SIGMOD ’00: Proceedings of the 2000 ACM SIGMOD international conference on Management of data . 2000
[15]  
Item-based collaborative filtering recommendation algorithms. Badrul Sarwar,George Karypis,Joseph Konstan,et al. Proceedings of the 10th International World Wide Web Conference . 2001
[16]  
Empirical analysis of predictive algorithms for collaborative filtering. Breese J,Hecherman D,Kadie C. Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence . 1998
[17]  
Term-weighting approaches in automatic text retrieval. Gerard Salton,Christopher Buckley. Information Processing Letters . 1988
[18]  
Fast Algorithms for Mining Association Rules. Agrawal R,Srikant R. Proceedings of the 20th International Conference on Very Large Databases(VLDB’94) . 1994
[19]  
Finding and evaluating community structure in networks. Newman M E J,Girvan M. Physical Review . 2004
[20]  
Community detection in complex networks using extremal optimization. Duch Jordi,Arenas Alex. Physical review. E, Statistical, nonlinear, and soft matter physics . 2005