基于L1/2正则化的超分辨率图像重建算法

被引:6
作者
王欢
王永革
机构
[1] 北京航空航天大学数学与系统科学学院
关键词
L1/2正则化; 稀疏表示; 超分辨率图像重建; K-SVD算法; 字典学习; 训练样本;
D O I
暂无
中图分类号
TP391.41 [];
学科分类号
080203 ;
摘要
为提高图像重建质量,研究超分辨率图像重建技术与稀疏表示理论,提出一种基于L1/2正则化的超分辨率图像重建算法。将L1/2正则化理论运用到字典学习中,利用学习得到的字典重建高分辨率图像。实验结果表明,该算法的图像重建效果优于基于L1正则化的超分辨率图像重建算法。
引用
收藏
页码:191 / 194
页数:4
相关论文
共 13 条
  • [1] Freeman WT,Jones TR,Pasztor EC.Example-based super-resolution. IEEE Computer Graphics and Applications . 2002
  • [2] Yang Jianchao,Wright J,Ma Yi,et al.Image Super-resolution asSparse Representation of Raw Image Patches. Proceedings ofIEEE Conference on Computer Vision and Pattern Recognition . 2008
  • [3] Stark H,Oskoui P.High-resolution image recovery from image-plane arrays, using convex projections. Journal of the Optical Society of America A: Optics, Image Science and Vision . 1989
  • [4] Unser M,Aldroubi A,Eden M.Fast B-spline transforms for continuous image representation and interpolation. IEEE Transactions on Pattern Analysis and Machine Intelligence . 1991
  • [5] Baker S,Kanade T.Limits on super-resolution and how to break them. IEEE Transactions on Pattern Analysis and Machine Intelligence . 2002
  • [6] Aharon M,Elad M,Bruckstein A.K-SVD:An algorithm for designing overcomplete dic-tionaries for sparse representation. IEEE Transactions on Electromagnetic Compatibility . 2006
  • [7] Xu Zongben,Chang Xiangyu,Xu Fengmin,et al.L1/2Regulari-zation:An Iterative Half Thresholding Algorithm. http://gr.xjtu.edu.cn:8080/c/document_library/get_file?folderId=84&name=DLFE-2354.pdf#<referer=http://gr.xjtu.edu.cn:8080/c/portal/layout?p_l_id=PUB.1261.5> . 2010
  • [8] Thévenaz P,Blu T,Unser M.Handbook of Medical ImagingProcessing and Analysis. . 2000
  • [9] Yang Jianchao,Wright J,Huang T,et al.Image Super-resolutionvia Sparse Representation. IEEE Transactions on ImageProcessing . 2010
  • [10] Irani M,Peleg S.Improving resolution by image registration. CVGIP Graphical Models and Image Processing . 1991