共 5 条
基于SOFM神经网络的图像融合二值化方法
被引:17
作者:
潘梅森
荣秋生
机构:
[1] 湖南文理学院计算机科学与技术系
来源:
关键词:
图像融合;
二值化;
阈值;
SOFM神经网络;
像素;
D O I:
暂无
中图分类号:
TP183 [人工神经网络与计算];
TP391.41 [];
学科分类号:
080203 ;
摘要:
提出了一种基于自组织特征映射(SOFM)神经网络的图像融合二值化方法。介绍了SOFM神经网络的特点及学习算法,根据SOFM的聚类确定图像第一阈值作为循环迭代的初始值,对整幅图像进行循环迭代得到第二阈值,使用第二阈值对原始图像进行二值化,得到第一幅待融合图像;通过改进的Bernsen方法对原始图像进行二值化,得到第二幅待融合图像;最后根据图像灰度值选小的原则作为图像融合方法,得到最终的二值化图像。该方法既能有效地消除伪影,又能较好地分离字符和文字。模拟实验结果表明,该方法的二值化效果明显优于Bernsen方法和Ostu方法,且具有良好的适应性。
引用
收藏
页码:401 / 406
页数:6
相关论文