自适应阈值分割与局部背景线索结合的显著性检测

被引:13
作者
唐红梅 [1 ]
吴士婧 [1 ]
郭迎春 [2 ]
裴亚男 [1 ]
机构
[1] 河北工业大学电子信息工程学院
[2] 河北工业大学计算机科学与软件学院
关键词
显著性检测; 自适应阈值; 相邻颜色差值; 局部背景线索; 边缘优化;
D O I
暂无
中图分类号
TP391.41 [];
学科分类号
080203 ;
摘要
为了提高显著性算法对不同类图像的适用性以及结果的完整性,该文提出一种基于自适应阈值合并的分割过程与新的背景选择方法相结合的显著性检测算法。在分割过程中,生成相邻区块的RGB以及LAB共六通道融合的颜色差值序列,采用区块面积参数的反比例模型生成自适应阈值与颜色差值序列进行对比合并。在背景选择过程中,根据局部区域背景-主体-背景的相对位置关系线索,得到背景区域,再对结果进行边缘优化。该算法与其它算法相比得到的显著图不需要外接其他阈值算法即生成二值图,自适应阈值合并能排除复杂环境中的物体细节,专注于同等级大小物体的显著性对比。
引用
收藏
页码:1592 / 1598
页数:7
相关论文
empty
未找到相关数据