微生物电合成系统还原二氧化碳产甲烷的电势依赖性

被引:4
作者
鲍白翎 [1 ,2 ]
杨厚云 [2 ]
苏馈足 [1 ]
穆杨 [2 ]
机构
[1] 合肥工业大学土木与水利工程学院
[2] 中国科学技术大学化学与材料科学学院
关键词
微生物电合成系统(MES); 二氧化碳; 甲烷; 阴极电势; Methanobacterium;
D O I
暂无
中图分类号
X172 [环境微生物学]; X701 [废气的处理与利用];
学科分类号
071012 ; 0713 ; 083002 ;
摘要
二氧化碳(CO2)资源化利用是近年来的一个研究热点,利用生物电化学系统还原CO2生产能源物质是一种新兴技术.在微生物电合成系统(MES)中利用混合微生物富集阴极功能微生物,评估阴极电势对其还原CO2产甲烷的影响.当阴极电势从-0.70 V降低到-0.90 V vs Ag/Ag Cl时,MES产甲烷的量和速率都在增加,最大的产甲烷量和速率分别达到了0.265 mol/m2和0.025 mmol/h.与此同时,MES的电流密度从0.002 A/m2增加到0.18 A/m2,阴极产甲烷的库伦效率在49%和90%之间.当阴极电势更负时,MES阴极几乎不产甲烷.扫描电镜分析(SEM)表明,有多种不同形态的微生物吸附在阴极碳毡上,它们的形态主要呈杆状和球状.16S r DNA测序分析表明Methanobacterium是MES阴极生物膜上优势的产甲烷菌.本研究表明,微生物电合成系统还原CO2产甲烷的阴极电势必须控制在适当的范围内,才能高效地还原CO2产甲烷.
引用
收藏
页码:968 / 973
页数:6
相关论文
共 25 条
[1]  
有机废水微生物电解产氢研究及电极微生物功能解析.[D].刘文宗.哈尔滨工业大学.2011, 03
[2]  
Technological advances in CO 2 conversion electro-biorefinery: A step toward commercialization.[J].Ahmed ElMekawy;Hanaa M. Hegab;Gunda Mohanakrishna;Ashraf F. Elbaz;Metin Bulut;Deepak Pant.Bioresource Technology.2016,
[3]  
Promoted electromethanosynthesis in a two-chamber microbial electrolysis cells (MECs) containing a hybrid biocathode covered with graphite felt (GF).[J].Guangyin Zhen;Xueqin Lu;Takuro Kobayashi;Gopalakrishnan Kumar;Kaiqin Xu.Chemical Engineering Journal.2016,
[4]  
Enhanced production of methane from waste activated sludge by the combination of high-solid anaerobic digestion and microbial electrolysis cell with iron–graphite electrode.[J].Yinghong Feng;Yaobin Zhang;Shuo Chen;Xie Quan.Chemical Engineering Journal.2015,
[5]  
Understanding methane bioelectrosynthesis from carbon dioxide in a two-chamber microbial electrolysis cells (MECs) containing a carbon biocathode.[J].Guangyin Zhen;Takuro Kobayashi;Xueqin Lu;Kaiqin Xu.Bioresource Technology.2015,
[6]   A logical data representation framework for electricity-driven bioproduction processes [J].
Patil, Sunil A. ;
Gildemyn, Sylvia ;
Pant, Deepak ;
Zengler, Karsten ;
Logan, Bruce E. ;
Rabaey, Korneel .
BIOTECHNOLOGY ADVANCES, 2015, 33 (06) :736-744
[7]  
Characterization of methane production and microbial community shifts during waste activated sludge degradation in microbial electrolysis cells.[J].Rui Sun;Aijuan Zhou;Jianna Jia;Qing Liang;Qian Liu;Defeng Xing;Nanqi Ren.Bioresource Technology.2015,
[8]  
Carbon Dioxide Capture and Storage: Issues and Prospects.[J].Heleen de Coninck;Sally M. Benson.Annual Review of Environment and Resources.2014, 1
[9]  
Microbial electrolysis cells turning to be versatile technology: Recent advances and future challenges.[J].Yifeng Zhang;Irini Angelidaki.Water Research.2014,
[10]  
Cobalt recovery with simultaneous methane and acetate production in biocathode microbial electrolysis cells.[J].Liping Huang;Linjie Jiang;Qiang Wang;Xie Quan;Jinhui Yang;Lijie Chen.Chemical Engineering Journal.2014,