使用超椭球参数化坐标的支持向量机

被引:3
作者
张钦礼 [1 ]
王士同 [1 ]
郭琦 [2 ]
机构
[1] 江南大学信息工程学院
[2] 哈尔滨工业大学理学院
关键词
支持向量机; 超椭球; 核函数;
D O I
10.13195/j.cd.2008.06.28.zhangql.010
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
基于n维超椭球面坐标变换公式,构造一类核函数——n维超椭球坐标变换核.由于是同维映射,且增大了类间距离,这类核函数在一定程度上改善了支持向量机的性能.与其他核函数(如高斯核)相比,将所构造的核函数用于支持向量机,仅产生了很少的支持向量,因而大大加快了学习速度,改善了泛化性能.数值实验结果表明了所构造的核函数的有效性和正确性.
引用
收藏
页码:626 / 630+636 +636
页数:6
相关论文
共 9 条
[1]   Support vector machine based multi-view face detection and recognition [J].
Li, YM ;
Gong, SG ;
Sherrah, J ;
Liddell, H .
IMAGE AND VISION COMPUTING, 2004, 22 (05) :413-427
[2]   Gene Selection for Cancer Classification using Support Vector Machines [J].
Isabelle Guyon ;
Jason Weston ;
Stephen Barnhill ;
Vladimir Vapnik .
Machine Learning, 2002, 46 :389-422
[3]  
Chih-Chung Chang,Chih-Jen Lin.Training v -Support Vector Classifiers: Theory and Algorithms[J].Neural Computation,2001(9)
[4]  
Theodoros Evgeniou,Massimiliano Pontil,Tomaso Poggio.Regularization Networks and Support Vector Machines[J].Adv. Comput. Math.,2000
[5]   An equivalence between sparse approximation and support vector machines [J].
Girosi, F .
NEURAL COMPUTATION, 1998, 10 (06) :1455-1480
[6]   The connection between regularization operators and support vector kernels [J].
Smola, AJ ;
Scholkopf, B ;
Muller, KR .
NEURAL NETWORKS, 1998, 11 (04) :637-649
[7]  
Christopher J.C. Burges.A Tutorial on Support Vector Machines for Pattern Recognition[J].Data Min. Knowl. Discov.,1998
[8]   SUPPORT-VECTOR NETWORKS [J].
CORTES, C ;
VAPNIK, V .
MACHINE LEARNING, 1995, 20 (03) :273-297
[9]  
Federico Girosi,Michael Jones,Tomaso Poggio.Regularization Theory and Neural Networks Architectures[J].Neural Computation,1995