【目的】针对森林资源遥感监测效果往往受森林类型识别分类方法的影响,提出一种基于元胞自动机的遥感影像森林类型分类方法,以提高Landsat-TM遥感影像的分类精度,为森林资源遥感监测提供技术支持。【方法】以小兴安岭带岭林业经营管理局为研究区,基于2010年Landsat5-TM影像数据和2012年森林资源二类调查数据,采用窗口法获取TM第5波段各待分类别的像元均值作为聚类中心,以元胞自动机的Moore模型为框架,以元胞为基本单位,以像元均值为对象,利用最小距离法求取进化规则(判断准则是中心元胞周围的8个元胞距每类聚类中心的距离最近且像元数量最多,则中心元胞属于该类别),充分考虑影像及地物之间的空间特征,采用元胞自动机分类方法进行森林类型的识别分类。同时,以相同的样本数,采用3层BP神经网络模型对TM遥感影像进行分类试验,并比较2种方法的分类效果。【结果】基于元胞自动机的分类方法总体分类精度为88.712 1%,Kappa系数为0.829 1,针叶林、阔叶林和针阔混交林的用户精度分别为73.60%,92.94%和94.13%,达到了区分针叶林、阔叶林和针阔混交林的分类目的。BP神经网络算法的总体分类精度为86.671 3%,Kappa系数为0.798 4,针叶林、阔叶林和针阔混交林的用户精度分别为69.22%,93.37%和90.76%。2种分类方法均可有效识别森林类型信息。【结论】元胞自动机模型应用于遥感影像森林类型识别分类可弥补因TM影像空间分辨率较低造成的遥感影像分类精度过低的问题,提高分类精度。在森林分布破碎、种类类型多样且结构复杂的带岭林区,该研究结果有助于森林资源监测与管理,可为大区域尺度的森林动态信息监测提供更好的数据及技术支持。