面向大数据基于知识的决策信息需求动态生成方法

被引:4
作者
金欣
宗士强
李友江
吴姗姗
闫晶晶
机构
[1] 南京电子工程研究所信息系统工程重点实验室
关键词
大数据; 决策信息; 需求生成; 需求建模; 基于知识的方法;
D O I
10.16208/j.issn1000-7024.2015.07.043
中图分类号
TP311.52 [];
学科分类号
摘要
为提升大数据环境下准确搜集企业决策支持信息的效率,基于企业决策事务与所需信息类型间有确定映射关系的原理,提出一种基于知识的决策信息需求动态生成方法。发掘决策事务与信息需求间的潜在关联关系并建立知识库,根据动态感知的用户决策事务类型,运用知识实现需求的自动生成和精细描述。实验结果表明,该方法能有效减少信息需求表达的耗时,保证一定准确度,提高决策效率。
引用
收藏
页码:1900 / 1907
页数:8
相关论文
共 16 条
  • [1] Ecological evaluation of persuasive messages using Google AdWords. Marco G,Carlo S,Oliviero S. Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics . 2012
  • [2] 联合情报保障体系情报信息分发控制系统
    张坚
    陈召兵
    [J]. 指挥信息系统与技术, 2013, 4 (02) : 33 - 36
  • [3] Building Watson: An Overview of the DeepQA Project[J] . Ferrucci, David,Brown, Eric,Chu-Carroll, Jennifer,Fan, James,Gondek, David,Kalyanpur, Aditya A,Lally, Adam,Murdock, J William,Nyberg, Eric,Prager, John,Schlaefer, Nico,Welty, Chris. &nbspAI Magazine . 2010 (3)
  • [4] Falcon-AO: A practical ontology matching system[J] . Wei Hu,Yuzhong Qu. &nbspWeb Semantics: Science, Services and Agents on the World Wide Web . 2008 (3)
  • [5] A text-based decision support system for financial sequence prediction
    Chan, Samuel W. K.
    Franklin, James
    [J]. DECISION SUPPORT SYSTEMS, 2011, 52 (01) : 189 - 198
  • [6] Knowledge-based spatial decision support systems: An assessment of environmental adaptability of crops[J] . Iftikhar U. Sikder. &nbspExpert Systems With Applications . 2008 (3)
  • [7] Introducing the knowledge graph:Things,not strings. Singhal A. http://googleblog.blogspot.com/2012/05/introducing-knowledge-graph-thingsnot-strings.html . 2012
  • [8] Introducing the knowledge graph:Things,not strings. Singhal A. http://googleblog.blogspot.com/2012/05/introducing-knowledge-graph-thingsnot-strings.html . 2012
  • [9] fact sheet:Big data across the federal government. Office of science and technology policy. http://digital-scholarship.org/digitalkoans/2012/03/29/fact-sheet-big-data-across-the-federal-government/ . 2012
  • [10] Advertising keyword generation using active learning. Hao W,Guang Q,Xiaofei H,et al. Proceedings of WWW MADRID . 2009