基于改进多目标遗传算法的入侵检测集成方法(英文)

被引:21
作者
俞研
黄皓
机构
[1] 南京大学计算机科学与技术系
关键词
入侵检测; 特征选择; 优化; 多目标遗传算法; 选择性集成;
D O I
暂无
中图分类号
TP393.08 []; TP18 [人工智能理论];
学科分类号
0839 ; 1402 ; 081104 ; 0812 ; 0835 ; 1405 ;
摘要
针对现有入侵检测算法中存在着对不同类型攻击检测的不均衡性以及冗余或无用特征导致的检测模型复杂与检测精度下降的问题,提出了一种基于改进多目标遗传算法的入侵检测集成方法.利用改进的多目标遗传算法生成检测率与误报率均衡优化的最优特征子集的集合,并采用选择性集成方法挑选精确的、具有多样性的基分类器构造集成入侵检测模型.实验结果表明,该算法能够有效地解决入侵检测中存在的特征选择问题,并在保证较高检测精度的基础上,对不同类型的攻击检测具有良好的均衡性.
引用
收藏
页码:1369 / 1378
页数:10
相关论文
共 11 条
[1]  
Ensemble neural networks:Many could be better than all. Zhou ZH,Wu JX,Tang W. Artificial Intelligence . 2002
[2]  
Intrusion detection using an ensemble of intelligent paradigms. Mukkamala S,Sung AH,Abraham A. Journal of Network and Computer Applications . 2005
[3]  
Comparison of algorithms that select features for pattern classifiers. Kudo M,Sklansky J. Pattern Recognition . 2000
[4]  
A framework for constructing features and models for intrusion detection systems. Lee WK,Stolfo SJ. ACM Trans.on Information and System Security . 2000
[5]  
Feature selection:Evaluation,application,and small sample performance. Jain A,Zongker D. IEEE Transactions on Pattern Analysis and Machine Intelligence . 1997
[6]  
Multiobjective optimization using nondominated sorting in genetic algorithms. Srinivas N,Deb K. Evolutionary Computation . 1995
[7]  
A fast and elitist multi-objective genetic algorithm:NSGA-II. Deb K,Pratap A,Agarwal S,Meyarivan T. IEEE Trans.on Evolutionary Computation . 2002
[8]  
Adaptive floating search methods in feature selection. Somol P,Pudil P,Novovicova J,Paclik P. Pattern Recognition . 1999
[9]  
Feature subset selection using a genetic algorithm. Yang J,Honavar V. IEEE Intelligent Systems . 1998
[10]  
Neural network ensembles. Hansen LK,Salamon P. IEEE Transactions on Pattern Analysis and Machine Intelligence . 1990