自然与社会环境中的幂律现象和双帕累托对数正态分布

被引:6
作者
方正
王杰
机构
[1] 美国麻省大学罗威尔分校计算机科学系
关键词
双帕累托对数正态分布; 复杂网络; 自然现象; 社会现象;
D O I
暂无
中图分类号
O211.3 [分布理论];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
幂律是在许多自然和社会环境中都能观察到的现象。但如何精确地描述这种现象并合理地解释这种现象的成因却一直令人困扰。双帕累托对数正态分布从随机过程的角度对这一问题给出了一个新的思路。本文首先描述双帕累托对数正态分布的数学推导与生成模型,然后解释此分布为什么会在社交网朋友的数量、互联网文件的大小、股票市场的回报、社会财富的占有、城市人口的规模、油田的储量及森林火灾焚烧的面积等现象中出现的可能原因。
引用
收藏
页码:1 / 12
页数:12
相关论文
共 49 条
[1]   Generalized Pareto Distribution Model and Its Application to Hydrocarbon Resource Structure Prediction of the Huanghua Depression [J].
Liu Xiaoping Jin Zhijun Chen Shanyong and Liu Lifang Basin and Reservoir Research Center China University of Petroleum Beijing China Key Laboratory for Hydrocarbon Accumulation Mechanism of Ministry Education China University of Petroleum Beijing China Exploration and Production Research Institute SINOPEC Beijing China Science and Technology Information Department of Dagang Oilfield CNPC Tianjing China China University of Geosciences Beijing China .
Petroleum Science, 2006, (02) :22-27
[2]  
Market efficiency,the Pareto wealth distribution,and the Levy distribution of stock returns. LEVY M. The Economy as anEvolving Complex System III . 2006
[3]  
Théorie de la spéculation. BACHELIER L. Annales Scientifiques de l’’Ecole Normale Supérieure . 1900
[4]  
Web server workload characterization:the search for invariants. ARLITT M F,WILLIAMSON C L. Proceedings of the ACMSIGMETRICS’’96 . 1996
[5]  
Heavy-tailed probability distribution in the World Wide Web. CROVELLA M E,TAQQU M S,BESTAVROS A. A PracticalGuide to Heavy Tails:statistical techniques and applications . 1998
[6]  
Self-similarity and long range dependence on the internet:a second look at the evidence,origins and implications. GONG W,LIU Y,MISRA V,et al. Computer Networks . 2005
[7]  
On MySpace account spans and double Pareto-like distribution of friends. RIBEIRO B,GAUVIN W,LIU Be,t al. SecondInternational Workshop on Network Science for Communication Networks(NetSciCom) . 2010
[8]  
Estimation and testing for rank size rule regression under pareto distribution. NISHIYAMA Y,OSADA S,MORIMUNE K. Proceedings of the International Environmental Modelling and Software Society IEMSS 2004 . 2004
[9]  
The size distribution across all cities double Pareto lognormal strikes. GIESEN K,ZIMMERMANN A,SUEDEKUM J. Journalof Urban Economics . 2010
[10]  
Gibrat’’s law for(all)cities:reply. EECKHOUT J. The American Economist . 2009