分布式水文模型全局敏感性高效分析方法研究(英文)

被引:9
作者
宋晓猛 [1 ]
占车生 [2 ]
夏军 [2 ]
孔凡哲 [1 ]
机构
[1] School of Resource and Earth Science, China University of Mining & Technology
[2] Key Laboratory of Water Cycle & Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research,
关键词
response surface methodology; sensitivity analysis; support vector machines; RSMSobol method; Huaihe River Basin;
D O I
暂无
中图分类号
P334.92 [];
学科分类号
摘要
Sensitivity analysis of hydrological model is the key for model uncertainty quantification. However, how to effectively validate model and identify the dominant parameters for distributed hydrological models is a bottle-neck to achieve parameters optimization. For this reason, a new approach was proposed in this paper, in which the support vector machine was used to construct the response surface at first. Then it integrates the SVM-based response surface with the Sobol' method, i.e. the RSMSobol' method, to quantify the parameter sensitivities. In this work, the distributed time-variant gain model (DTVGM) was applied to the Huaihe River Basin, which was used as a case to verify its validity and feasibility. We selected three objective functions (i.e. water balance coefficient WB, Nash-Sutcliffe efficiency coefficient NS, and correlation coefficient RC) to assess the model performance as the output responses for sensitivity analysis. The results show that the parameters g1 and g2 are most important for all the objective functions, and they are almost the same to that of the classical approach. Furthermore, the RSMSobol method can not only achieve the quantification of the sensitivity, and also reduce the computational cost, with good accuracy compared to the classical approach. And this approach will be effective and reliable in the global sensitivity analysis for a complex modelling system.
引用
收藏
页码:209 / 222
页数:14
相关论文
共 24 条
  • [1] 大尺度水循环模拟系统不确定性研究进展(英文)
    宋晓猛
    占车生
    孔凡哲
    夏军
    [J]. Journal of Geographical Sciences, 2011, 21 (05) : 801 - 819
  • [2] 大尺度水循环模拟系统不确定性研究进展
    宋晓猛
    占车生
    孔凡哲
    夏军
    [J]. 地理学报, 2011, 66 (03) : 396 - 406
  • [3] 新安江模型和人工神经网络的耦合应用
    宋晓猛
    孔凡哲
    [J]. 水土保持通报, 2010, 30 (06) : 135 - 138+144
  • [4] 基于Sobol法的TOPMODEL模型全局敏感性分析
    任启伟
    陈洋波
    周浩澜
    徐会军
    [J]. 人民长江, 2010, 41 (19) : 91 - 94+107
  • [5] 基于Extend FAST方法的新安江模型参数全局敏感性分析
    任启伟
    陈洋波
    舒晓娟
    [J]. 中山大学学报(自然科学版), 2010, 49 (03) : 127 - 134
  • [6] 模型多参数灵敏度与不确定性分析
    王纲胜
    夏军
    陈军锋
    [J]. 地理研究, 2010, 29 (02) : 263 - 270
  • [7] 黄河无定河流域分布式时变增益水文模型的应用研究
    夏军
    叶爱中
    乔云峰
    王纲胜
    [J]. 应用基础与工程科学学报, 2007, (04) : 457 - 465
  • [8] 基于支持向量机的小样本响应曲面法研究
    何桢
    崔庆安
    [J]. 工业工程, 2006, (05) : 6 - 10+27
  • [9] 一种基于支持向量机的非参数双响应曲面法
    崔庆安
    何桢
    车建国
    [J]. 天津大学学报, 2006, (08) : 1008 - 1014
  • [10] 分布式时变增益流域水循环模拟
    夏军
    王纲胜
    吕爱锋
    谈戈
    [J]. 地理学报, 2003, (05) : 789 - 796