面向复合维信息特征的微博舆情事件感知方法

被引:1
作者
黄炜 [1 ,2 ]
刘坤 [1 ]
杨青 [2 ]
机构
[1] 不详
[2] 湖北工业大学管理学院
[3] 不详
[4] 武汉理工大学管理学院
[5] 不详
关键词
微博; 主题挖掘; LDA; 社交网络; 舆情监测;
D O I
暂无
中图分类号
TP393.092 []; G206 [传播理论];
学科分类号
摘要
微博的短文本与半结构化特征,使得传统的基于热点词的舆情事件检测方法已不适用。对于微博的热点发现,需要充分利用微博特有的信息特征,构建适应于微博的热点感知方法。通过对微博的文本特征和社会化关系特征进行无监督聚类,提出一种基于LDA主题模型,面向复合维信息特征的微博舆情事件感知方法。实验表明,该方法在话题挖掘以及话题热点计算上有良好的效果。
引用
收藏
页码:146 / 153
页数:8
相关论文
共 22 条
[1]   网络舆情主题信息采集研究 [J].
黄炜 ;
金雅博 ;
胡昌龙 .
现代图书情报技术, 2012, (11) :65-71
[2]  
An introduction to latent semantic analysis[J] . Thomas K. Landauer,Peter W. Foltz,Darrell Laham. &nbspDiscourse Processes . 1998 (2-3)
[3]  
A vector space model for automatic indexing[J] . G. Salton,A. Wong,C. S. Yang. &nbspCommunications of the ACM . 1975 (11)
[4]  
Using latent semantic analysis to improve information retrieval. Dum a is S T,Furnas G W,L andauer T K,et al. Proceedings of CHI′88:Conference on Human Factors in Computing . 1988
[5]  
The Author-topicModel for Authors and Documents. Rosen-Zvi M,Griffiths T,Steyvers M,et al. Proceedings of the 20thConference on Uncertainty in Artificial Intelligence(UAI’’04) . 2004
[6]  
Labeled lda:A supervised topic model for credit attribution in multi-labeled corpora. Ramage D,Hall D,Nallapati R,et al. Proceedings of the2009Conference on Empirical Methods in Natu-ral Language Processing (EMNLP’’09) . 2009
[7]  
Latent Dirichlet allocation. Blei D M,Ng A Y,Jordan M I. Journal of Machine Learning Research . 2003
[8]  
Characterizing microblogs with topic models. Ramage D,Dumais S,Liebling D. Proceedings of International AAAI Conference on Weblogs and Social Media (ICWSM’’10) . 2010
[9]  
Comparing Twitter and traditional media using topic models. Zhao Wayne Xin,Jiang Jing,Weng Jianshu,et al. Proceedings of the33rd European Conference on Information Retrieval (ECIR’’11) . 2011
[10]  
Topic detection and tracking pilot study final report. Allan J, Carbonell J, Doddington G, et al. Proceedings of the DARPA Broadcast News Transcription and Understanding Workshop . 1998