基于图像处理和支持向量机的玉米病害识别

被引:19
作者
田有文
王立地
姜淑华
机构
[1] 沈阳农业大学信息与电气工程学院
关键词
玉米病害; 图像处理; 支持向量机;
D O I
10.19650/j.cnki.cjsi.2006.s3.141
中图分类号
TP391.4 [模式识别与装置];
学科分类号
0811 ; 081101 ; 081104 ; 1405 ;
摘要
应用计算机图像处理技术和支持向量机分类方法研究了玉米叶部病害的识别,以提高识别的准确性和效率。对采集到的玉米病害彩色图像采用矢量中值滤波法去除噪声,然后提取基于色度的玉米病害图像的彩色纹理特征,并用支持向量机的模式识别方法来识别玉米病害。实验结果表明:该模型对3种玉米病害的平均正确识别率为87.5%,即使在分类样本较少时,也具有良好的分类能力和泛化能力,适合于玉米病害的分类。
引用
收藏
页码:2123 / 2124
页数:2
相关论文
共 2 条
[1]   关于统计学习理论与支持向量机 [J].
张学工 .
自动化学报, 2000, (01) :36-46
[2]   A tutorial on Support Vector Machines for pattern recognition [J].
Burges, CJC .
DATA MINING AND KNOWLEDGE DISCOVERY, 1998, 2 (02) :121-167