医疗资源影响下具有潜伏期的一类传染病模型建立及性态分析

被引:1
作者
董宜静
李桂花
机构
[1] 中北大学理学院
关键词
传染病模型; 医院病床数; 恢复率函数; 稳定性分析; 后向分支;
D O I
暂无
中图分类号
O175 [微分方程、积分方程];
学科分类号
070104 ;
摘要
建立了医疗资源影响下的考虑疾病具有潜伏期的一类传染病模型,并分析了模型的动力学性态.发现疾病流行与否由基本再生数和医院病床数共同决定,并得到了病床数的阈值条件.当基本再生数R0大于1时,系统只存在惟一正平衡点,且通过构造Dulac函数证明了正平衡点只要存在一定是全局渐近稳定的;当R0<1,我们得到系统存在两个正平衡点及无正平衡点的条件,且只有当医院的病床数小于阈值时,系统会经历后向分支.因此,可根据实际情况使医院病床的投入量不低于阈值条件,不仅有利于疾病的控制而且不会出现医疗资源过剩的现象.
引用
收藏
页码:165 / 170
页数:6
相关论文
共 8 条
[1]  
Effect of discretization on dynamical behavior of SEIR and SIR models with nonlinear incidence.[J].Junli Liu;Baoyang Peng;Tailei Zhang.Applied Mathematics Letters.2015,
[2]  
Global stability for an SEI model of infectious disease with immigration.[J].Ram P. Sigdel;C. Connell McCluskey.Applied Mathematics and Computation.2014,
[3]  
A non-autonomous SEIRS model with general incidence rate.[J].Joaquim P. Mateus;César M. Silva.Applied Mathematics and Computation.2014,
[4]  
Global stability of multi-group SEIR epidemic models with distributed delays and nonlinear transmission.[J].Hongying Shu;Dejun Fan;Junjie Wei.Nonlinear Analysis: Real World Applications.2011, 4
[5]   Bifurcations and complex dynamics of an SIR model with the impact of the number of hospital beds [J].
Shan, Chunhua ;
Zhu, Huaiping .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2014, 257 (05) :1662-1688
[6]  
Bifurcations in an epidemic model with constant removal rate of the infectives.[J].Wendi Wang;Shigui Ruan.Journal of Mathematical Analysis and Applications.2003, 2
[7]  
Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission.[J].P. van den Driessche;James Watmough.Mathematical Biosciences.2002, 1
[8]   A simple vaccination model with multiple endemic states [J].
Kribs-Zaleta, CM ;
Velasco-Hernández, JX .
MATHEMATICAL BIOSCIENCES, 2000, 164 (02) :183-201