Statistical mechanics - Microscopic chaos from brownian motion?

被引:49
作者
Dettmann, CP
Cohen, EGD
van Beijeren, H
机构
[1] Rockefeller Univ, Ctr Studies Phys & Biol, New York, NY 10021 USA
[2] Univ Utrecht, Inst Theoret Phys, NL-3584 CC Utrecht, Netherlands
关键词
D O I
10.1038/44759
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Gaspard et al.1 have shown that the position of a brownian particle behaves like a Wiener process with positive resolution-dependent entropy2. More surprisingly3,4,5, they claim that this observation provides proof of ‘microscopic chaos’, a term they illustrate by examples of finite dimensional dynamical systems which are intrinsically unstable. We do not believe that they have provided evidence for microscopic chaos in the sense in which they use the term.
引用
收藏
页码:875 / 875
页数:1
相关论文
共 5 条
[1]   COMPUTING THE KOLMOGOROV-ENTROPY FROM TIME SIGNALS OF DISSIPATIVE AND CONSERVATIVE DYNAMICAL-SYSTEMS [J].
COHEN, A ;
PROCACCIA, I .
PHYSICAL REVIEW A, 1985, 31 (03) :1872-1882
[2]   Statistical mechanics -: Brownian motion and microscopic chaos [J].
Dürr, D ;
Spohn, H .
NATURE, 1998, 394 (6696) :831-+
[3]  
Ehrenfest P., 1959, CONCEPTUAL FDN STAT, P10
[4]   Experimental evidence for microscopic chaos [J].
Gaspard, P ;
Briggs, ME ;
Francis, MK ;
Sengers, JV ;
Gammons, RW ;
Dorfman, JR ;
Calabrese, RV .
NATURE, 1998, 394 (6696) :865-868
[5]   ESTIMATION OF THE KOLMOGOROV-ENTROPY FROM A CHAOTIC SIGNAL [J].
GRASSBERGER, P ;
PROCACCIA, I .
PHYSICAL REVIEW A, 1983, 28 (04) :2591-2593