Noncommutative lattices and their continuum limits

被引:5
作者
Bimonte, G
Ercolessi, E
Landi, G
Lizzi, F
Sparano, G
TeotonioSobrinho, P
机构
[1] UNIV NAPLES, DIPARTIMENTO SCI FISICHE, I-80125 NAPLES, ITALY
[2] E SCHRODINGER INT INST MATH PHYS, A-1090 VIENNA, AUSTRIA
[3] INT CTR THEORET PHYS, I-34100 TRIESTE, ITALY
[4] UNIV BOLOGNA, DIPARTIMENTO FIS, I-40126 BOLOGNA, ITALY
[5] UNIV BOLOGNA, INFM, I-40126 BOLOGNA, ITALY
[6] UNIV TRIESTE, DIPARTIMENTO SCI MATEMAT, I-34127 TRIESTE, ITALY
[7] IST NAZL FIS NUCL, SEZ NAPOLI, I-80125 NAPLES, ITALY
[8] UNIV ILLINOIS, DEPT PHYS, CHICAGO, IL 60607 USA
关键词
topological space; noncommutative lattices; C-*-algebras;
D O I
10.1016/S0393-0440(95)00064-X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider finite approximations of a topological space M by noncommutative lattices of points. These lattices are structure spaces of noncommutative C*-algebras which in turn approximate the algebra C(M) of continuous functions on M. We show how to recover the space M and the algebra C(M) from a projective system of noncommutative lattices and an inductive system of noncommutative C*-algebras, respectively.
引用
收藏
页码:329 / 348
页数:20
相关论文
共 18 条
[1]   FINITE APPROXIMATIONS TO QUANTUM PHYSICS - QUANTUM POINTS AND THEIR BUNDLES [J].
BALACHANDRAN, AP ;
BIMONTE, G ;
ERCOLESSI, E ;
TEOTONIOSOBRINHO, P .
NUCLEAR PHYSICS B, 1994, 418 (03) :477-493
[2]   FINITE QUANTUM PHYSICS AND NONCOMMUTATIVE GEOMETRY [J].
BALACHANDRAN, AP ;
BIMONTE, G ;
ERCOLESSI, E ;
LANDI, G ;
LIZZI, F ;
SPARANO, G ;
TEOTONIOSOBRINHO, P .
NUCLEAR PHYSICS B, 1995, :20-45
[3]   THETA-VACUA, FERMIONS FROM BOSONS, SOLITONS AND WESS-ZUMINO TERMS IN STRING MODELS [J].
BALACHANDRAN, AP ;
LIZZI, F ;
SPARANO, G .
NUCLEAR PHYSICS B, 1986, 263 (3-4) :608-620
[4]  
BALACHANDRAN AP, IN PRESS J GEOM PHYS
[5]  
BEHNCKE H., 1974, J FUNCTIONAL ANAL, V16, P241, DOI [10.1007/BF01393687, DOI 10.1007/BF01393687]
[6]  
Bimonte G, 1996, J GEOM PHYS, V20, P318, DOI 10.1016/S0393-0440(95)00063-1
[7]  
CHEEGER J, 1984, COMMUN MATH PHYS, V92, P404
[8]  
Connes A., 1994, NONCOMMUTATIVE GEOME
[9]  
Creutz M., 1983, Quarks, Gluons and Lattices
[10]  
DAVID F, 1993, LECT LES HOUCH EC ET