Computing dominant poles of power system transfer functions

被引:75
作者
Martins, N [1 ]
Lima, LTG [1 ]
Pinto, HJCP [1 ]
机构
[1] UNIV FED FLUMINENSE, DEPT ELECT ENGN, BR-24210 NITEROI, RJ, BRAZIL
关键词
small-signal stability; poorly damped oscillations; transfer function; dominant poles; transfer function residues; participation factors; large scale systems; sparse eigenanalysis;
D O I
10.1109/59.486093
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper describes the first algorithm to efficiently compute the dominant poles of any specified high order transfer function. As the method is closely related to Rayleigh iterations (generalized Rayleigh quotient), it retains the numerical properties of global and ultimately cubic convergence. The results presented are limited to the study of low frequency oscillations in electrical power systems but the algorithm is completely general.
引用
收藏
页码:162 / 167
页数:6
相关论文
共 25 条
[1]   EVALUATION AND IMPROVEMENT OF ELECTRO-MECHANICAL OSCILLATION DAMPING BY MEANS OF EIGENVALUE-EIGENVECTOR ANALYSIS - PRACTICAL RESULTS IN THE CENTRAL PERU POWER SYSTEM [J].
ARCIDIACONO, V ;
FERRARI, E ;
MARCONATO, R ;
DOSGHALI, J ;
GRANDEZ, D .
IEEE TRANSACTIONS ON POWER APPARATUS AND SYSTEMS, 1980, 99 (02) :769-778
[2]  
BOLLINGER KE, 1994, 1994 IEEE PES WINT M
[3]  
BYERLY RT, 1978, EL2348 EPRI 1
[4]  
DAVIDSON ER, 1993, COMPUTER PHYSICS, V7
[5]  
Golub G, 2013, Matrix Computations, V4th
[6]  
GRUND CE, 1992, 1992 IEEE PES SUMM M
[7]  
HAUER JF, 1990, PUBLICATION, P105
[8]  
Jennings A., 1977, MATRIX COMPUTATION E
[9]  
Kailath T., 1980, Linear systems
[10]  
KLEIN M, 1957, 1994 IEEE PES WINT M, P94