Could Fisher, Jeffreys and Neyman have agreed on testing?

被引:181
作者
Berger, JO [1 ]
机构
[1] Duke Univ, Inst Stat & Decis Sci, Durham, NC 27708 USA
关键词
p-values; posterior probabilities of hypotheses; Type I and Type II error probabilities; conditional testing;
D O I
10.1214/ss/1056397485
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Ronald Fisher advocated testing using p-values, Harold Jeffreys proposed use of objective posterior probabilities of hypotheses and Jerzy Neyman recommended testing with fixed error probabilities. Each was quite critical of the other approaches. Most troubling for statistics and science is that the three approaches can lead to quite different practical conclusions. This article focuses on discussion of the conditional frequentist approach to testing, which is argued to provide the basis for a methodological unification of the approaches of Fisher, Jeffreys and Neyman. The idea is to follow Fisher in using p-values to define the "strength of evidence" in data and to follow his approach of conditioning on strength of evidence; then follow Neyman by computing Type I and Type II error probabilities, but do so conditional on the strength of evidence in the data. The resulting conditional frequentist error probabilities equal the objective posterior probabilities of the hypotheses advocated by Jeffreys.
引用
收藏
页码:1 / 12
页数:12
相关论文
共 70 条
[1]  
[Anonymous], 1979, Philosophical Problems of Statistical Inference: Learning from R. A. Fisher
[2]  
[Anonymous], 1970, The Significance Test Controversy
[3]  
[Anonymous], 1987, Statistical Science
[4]  
[Anonymous], 1925, MATH PROC CAMBRIDGE
[5]  
BARNETT V, 1999, COMP STAT INF
[6]   ELIMINATION OF NUISANCE PARAMETERS [J].
BASU, D .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1977, 72 (358) :355-366
[7]  
BASU D, 1975, SANKHYA SER A, V37, P1
[8]   P values for composite null models [J].
Bayarri, MJ ;
Berger, JO .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2000, 95 (452) :1127-1142
[9]  
Berger J, 1988, LECT NOTES MONOGRAPH
[10]  
BERGER J. O., 2013, Statistical Decision Theory and Bayesian Analysis, DOI [10.1007/978-1-4757-4286-2, DOI 10.1007/978-1-4757-4286-2]