Eigenvalues of complex Hamiltonians with PT-symmetry. I

被引:107
作者
Delabaere, E [1 ]
Pham, F [1 ]
机构
[1] Univ Nice, CNRS, UMR 6621, Math Lab, F-06108 Nice 2, France
关键词
complex WKB method; exact quantization conditions; resummability of Rayleigh-Schrodinger series;
D O I
10.1016/S0375-9601(98)00791-9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Using the "exact WKB method" [E. Delabaere et al., J. Math. Phys. 38 (1997) 6126], we prove some reality results on the spectrum of some families of non-Hermitian Hamiltonians having PI-symmetry. This partially solves a conjecture of Zinn-Justin and Bessis. In part II [Phys. Lett. A 250 (1998) 29] we will prove non-reality results for other such families. (C) 1998 Elsevier Science B.V.
引用
收藏
页码:25 / 28
页数:4
相关论文
共 4 条
[1]   Real spectra in non-Hermitian Hamiltonians having PT symmetry [J].
Bender, CM ;
Boettcher, S .
PHYSICAL REVIEW LETTERS, 1998, 80 (24) :5243-5246
[2]   ANHARMONIC OSCILLATOR [J].
BENDER, CM ;
WU, TT .
PHYSICAL REVIEW, 1969, 184 (05) :1231-&
[3]   Unfolding the quartic oscillator [J].
Delabaere, E ;
Pham, F .
ANNALS OF PHYSICS, 1997, 261 (02) :180-218
[4]   Exact semiclassical expansions for one-dimensional quantum oscillators [J].
Delabaere, E ;
Dillinger, H ;
Pham, F .
JOURNAL OF MATHEMATICAL PHYSICS, 1997, 38 (12) :6126-6184