Global impact of smoke aerosols from landscape fires on climate and the Hadley circulation

被引:122
作者
Tosca, M. G. [1 ]
Randerson, J. T. [1 ]
Zender, C. S. [1 ]
机构
[1] Univ Calif Irvine, Dept Earth Syst Sci, Irvine, CA 92697 USA
关键词
BIOMASS BURNING EMISSIONS; FOREST-FIRES; ATMOSPHERE; CLOUDS; CARBON; VARIABILITY; GASES; MODEL; DEFORESTATION; INDONESIA;
D O I
10.5194/acp-13-5227-2013
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Each year landscape fires across the globe emit black and organic carbon smoke particles that can last in the atmosphere for days to weeks. We characterized the climate response to these aerosols using an Earth system model. We used remote sensing observations of aerosol optical depth (AOD) and simulations from the Community Atmosphere Model, version 5 (CAM5) to optimize satellite-derived smoke emissions for high biomass burning regions. Subsequent global simulations using the adjusted fire emissions produced AODs that were in closer agreement with surface and space-based measurements. We then used CAM5, which included radiative aerosol effects, to evaluate the climate response to the fire-aerosol forcing. We conducted two 52 yr simulations, one with four sets of monthly cycling 1997-2009 fire emissions and one without. Fire emissions increased global mean annual AOD by 10% (+0.02) and decreased net all-sky surface radiation by 1% (1.3 W m(-2)). Elevated AODs reduced global surface temperatures by 0.13 +/- 0.01 degrees C. Though global precipitation declined only slightly, patterns of precipitation changed, with large reductions near the Equator offset by smaller increases north and south of the intertropical convergence zone (ITCZ). A combination of increased tropospheric heating and reduced surface temperatures increased equatorial subsidence and weakened the Hadley circulation. As a consequence, precipitation decreased over tropical forests in South America, Africa and equatorial Asia. These results are consistent with the observed correlation between global temperatures and the strength of the Hadley circulation and studies linking tropospheric heating from black carbon aerosols with tropical expansion.
引用
收藏
页码:5227 / 5241
页数:15
相关论文
共 83 条
[1]   Reduction of tropical cloudiness by soot [J].
Ackerman, AS ;
Toon, OB ;
Stevens, DE ;
Heymsfield, AJ ;
Ramanathan, V ;
Welton, EJ .
SCIENCE, 2000, 288 (5468) :1042-1047
[2]   Emission factors for open and domestic biomass burning for use in atmospheric models [J].
Akagi, S. K. ;
Yokelson, R. J. ;
Wiedinmyer, C. ;
Alvarado, M. J. ;
Reid, J. S. ;
Karl, T. ;
Crounse, J. D. ;
Wennberg, P. O. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2011, 11 (09) :4039-4072
[3]   AEROSOLS, CLOUD MICROPHYSICS, AND FRACTIONAL CLOUDINESS [J].
ALBRECHT, BA .
SCIENCE, 1989, 245 (4923) :1227-1230
[4]   The equilibrium response to idealized thermal forcings in a comprehensive GCM: implications for recent tropical expansion [J].
Allen, R. J. ;
Sherwood, S. C. ;
Norris, J. R. ;
Zender, C. S. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2012, 12 (10) :4795-4816
[5]   Recent Northern Hemisphere tropical expansion primarily driven by black carbon and tropospheric ozone [J].
Allen, Robert J. ;
Sherwood, Steven C. ;
Norris, Joel R. ;
Zender, Charles S. .
NATURE, 2012, 485 (7398) :350-U93
[6]   Aerosol-cloud-precipitation interactions. Part 1. The nature and sources of cloud-active aerosols [J].
Andreae, M. O. ;
Rosenfeld, D. .
EARTH-SCIENCE REVIEWS, 2008, 89 (1-2) :13-41
[7]   Smoking rain clouds over the Amazon [J].
Andreae, MO ;
Rosenfeld, D ;
Artaxo, P ;
Costa, AA ;
Frank, GP ;
Longo, KM ;
Silva-Dias, MAF .
SCIENCE, 2004, 303 (5662) :1337-1342
[8]   Emission of trace gases and aerosols from biomass burning [J].
Andreae, MO ;
Merlet, P .
GLOBAL BIOGEOCHEMICAL CYCLES, 2001, 15 (04) :955-966
[9]   Aerosol direct, indirect, semidirect, and surface albedo effects from sector contributions based on the IPCC AR5 emissions for preindustrial and present-day conditions [J].
Bauer, Susanne E. ;
Menon, Surabi .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2012, 117
[10]   Fire in the Earth System [J].
Bowman, David M. J. S. ;
Balch, Jennifer K. ;
Artaxo, Paulo ;
Bond, William J. ;
Carlson, Jean M. ;
Cochrane, Mark A. ;
D'Antonio, Carla M. ;
DeFries, Ruth S. ;
Doyle, John C. ;
Harrison, Sandy P. ;
Johnston, Fay H. ;
Keeley, Jon E. ;
Krawchuk, Meg A. ;
Kull, Christian A. ;
Marston, J. Brad ;
Moritz, Max A. ;
Prentice, I. Colin ;
Roos, Christopher I. ;
Scott, Andrew C. ;
Swetnam, Thomas W. ;
van der Werf, Guido R. ;
Pyne, Stephen J. .
SCIENCE, 2009, 324 (5926) :481-484