Separation of plasmid DNA from protein and bacterial lipopolysaccharides using displacement chromatography

被引:9
作者
Freitag, R [1 ]
Vogt, S [1 ]
机构
[1] Ecole Polytech Fed Lausanne, Lab Biotechnol Cellulaire, CH-1015 Ecublens, Switzerland
关键词
continuous bed column; displacement chromatography; lipopolysaccharide; plasmid DNA; SMA model;
D O I
10.1023/A:1008091200262
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The preparation of plasmid DNA at large scale constitutes a pressing problem in bioseparation. This paper describes a first investigation of displacement chromatography as a means to separate plasmid DNA (4.7 kb) from E. coli lipopolysaccharides and protein (holo transferrin), respectively. Displacement chromatography has advantages in this regard, since the substance mixture is resolved into rectangular zones of the individual components rather than into peaks. Thus a higher total concentration can be maintained in the pooled product fractions. Hydroxyapatite (type I and II) and anion exchange stationary phases were included in the experiments. In addition to a conventional anion exchange column packed with porous particles, the recently introduced continuous bed UNO TM anion exchange column was investigated. No DNA purification was possible with either hydroxyapatite material. Conventional particle based columns in general were not suited to the separation of any two substances varying considerably in molecular mass, e.g. plasmid DNA and standard protein. Presumably, the direct competition for the binding sites, which is essential in displacement chromatography, was restricted by the size dependency of the accessible stationary phase surface area in this case. Better results were obtained with the continuous bed column, in which the adsorptive surface coincides with the walls of the flow through pores. As a result the accessible surface does not vary as much with the size of the interacting molecules as for the conventional stationary phase materials. Sharper transitions were also observed between substance zones recovered from the UNO TM column. The steric mass action model was used to aid method development in case of the anion exchange approach. While further research in obviously necessary, displacement chromatography on continuous bed columns has been shown to be capable of separating plasmid DNA from typical impurities.
引用
收藏
页码:159 / 167
页数:9
相关论文
共 14 条
[1]   OPERATIONAL MODES OF CHROMATOGRAPHIC-SEPARATION PROCESSES [J].
ANTIA, FD ;
HORVATH, C .
BERICHTE DER BUNSEN-GESELLSCHAFT-PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 1989, 93 (09) :961-968
[2]  
Bernardi G., 1971, METH ENZYMOL, V21, P95
[3]   STERIC MASS-ACTION ION-EXCHANGE - DISPLACEMENT PROFILES AND INDUCED SALT GRADIENTS [J].
BROOKS, CA ;
CRAMER, SM .
AICHE JOURNAL, 1992, 38 (12) :1969-1978
[4]   DISPLACEMENT CHROMATOGRAPHY IN BIOTECHNOLOGICAL DOWNSTREAM PROCESSING [J].
FREITAG, R ;
BREIER, J .
JOURNAL OF CHROMATOGRAPHY A, 1995, 691 (1-2) :101-112
[5]   Analysis of endotoxins by capillary electrophoresis [J].
Freitag, R ;
Fix, M ;
Bruggemann, O .
ELECTROPHORESIS, 1997, 18 (10) :1899-1905
[6]  
Kasper C, 1996, BIOSEPARATION, V6, P247
[7]  
Kundu A, 1997, BIOTECHNOL BIOENG, V56, P119, DOI [10.1002/(SICI)1097-0290(19971020)56:2<119::AID-BIT1>3.0.CO
[8]  
2-S, 10.1002/(SICI)1097-0290(19971020)56:2&lt
[9]  
119::AID-BIT1&gt
[10]  
3.0.CO