A Glucosinolate Metabolism Pathway in Living Plant Cells Mediates Broad-Spectrum Antifungal Defense

被引:745
作者
Bednarek, Pawel [1 ]
Pislewska-Bednarek, Mariola [1 ]
Svatos, Ales [2 ]
Schneider, Bernd [2 ]
Doubsky, Jan [2 ]
Mansurova, Madina [2 ]
Humphry, Matt [1 ]
Consonni, Chiara [1 ]
Panstruga, Ralph [1 ]
Sanchez-Vallet, Andrea [3 ]
Molina, Antonio [3 ]
Schulze-Lefert, Paul [1 ]
机构
[1] Max Planck Inst Zuchtungsforsch, Dept Plant Microbe Interact, D-50829 Cologne, Germany
[2] Max Planck Inst Chem Ecol, D-07745 Jena, Germany
[3] Univ Politecn Madrid, Ctr Biotecnol & Genom Plantas, E-28223 Madrid, Spain
关键词
GLUTATHIONE-DEFICIENT MUTANT; ARABIDOPSIS-THALIANA; SECONDARY METABOLISM; DISEASE RESISTANCE; NONHOST RESISTANCE; BIOSYNTHESIS; MYROSINASE; CAMALEXIN; DATABASE; ENZYME;
D O I
10.1126/science.1163732
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Selection pressure exerted by insects and microorganisms shapes the diversity of plant secondary metabolites. We identified a metabolic pathway for glucosinolates, known insect deterrents, that differs from the pathway activated by chewing insects. This pathway is active in living plant cells, may contribute to glucosinolate turnover, and has been recruited for broad- spectrum antifungal defense responses. The Arabidopsis CYP81F2 gene encodes a P450 monooxygenase that is essential for the pathogen- induced accumulation of 4- methoxyindol- 3- ylmethylglucosinolate, which in turn is activated by the atypical PEN2 myrosinase ( a type of beta-thioglucoside glucohydrolase) for antifungal defense. We propose that reiterated enzymatic cycles, controlling the generation of toxic molecules and their detoxification, enable the recruitment of glucosinolates in defense responses.
引用
收藏
页码:101 / 106
页数:6
相关论文
共 39 条
[1]   Different myrosinase and idioblast distribution in Arabidopsis and Brassica napus [J].
Andréasson, E ;
Jorgensen, LB ;
Höglund, AS ;
Rask, L ;
Meijer, J .
PLANT PHYSIOLOGY, 2001, 127 (04) :1750-1763
[2]   Arabidopsis myrosinases TGG1 and TGG2 have redundant function in glucosinolate breakdown and insect defense [J].
Barth, C ;
Jander, G .
PLANT JOURNAL, 2006, 46 (04) :549-562
[3]   Structural complexity, differential response to infection, and tissue specificity of indolic and phenylpropanoid secondary metabolism in Arabidopsis roots [J].
Bednarek, P ;
Schneider, B ;
Svatos, A ;
Oldham, NJ ;
Hahlbrock, K .
PLANT PHYSIOLOGY, 2005, 138 (02) :1058-1070
[4]   The enzymic and chemically induced decomposition of glucosinolates [J].
Bones, Atle M. ;
Rossiter, John T. .
PHYTOCHEMISTRY, 2006, 67 (11) :1053-1067
[5]  
BRUSEWITZ G, 1977, BIOCHEM J, V162, P99
[6]   The crystal structures of Sinapis alba myrosinase and a covalent glycosyl-enzyme intermediate provide insights into the substrate recognition and active-site machinery of an S-glycosidase [J].
Burmeister, WP ;
Cottaz, S ;
Driguez, H ;
Iori, R ;
Palmieri, S ;
Henrissat, B .
STRUCTURE, 1997, 5 (05) :663-675
[7]   ESP and ESM1 mediate indol-3-acetonitrile production from indol-3-ylmethyl glucosinolate in Arabidopsis [J].
Burow, Meike ;
Zhang, Zhi-Yong ;
Ober, James A. ;
Lambrix, Virginia M. ;
Wittstock, Ute ;
Gershenzon, Jonathan ;
Kliebenstein, Daniel J. .
PHYTOCHEMISTRY, 2008, 69 (03) :663-671
[8]  
Cejpek K, 2001, ROY SOC CH, P480
[9]   Glucosinolate Metabolites Required for an Arabidopsis Innate Immune Response [J].
Clay, Nicole K. ;
Adio, Adewale M. ;
Denoux, Carine ;
Jander, Georg ;
Ausubel, Frederick M. .
SCIENCE, 2009, 323 (5910) :95-101
[10]   SNARE-protein-mediated disease resistance at the plant cell wall [J].
Collins, NC ;
Thordal-Christensen, H ;
Lipka, V ;
Bau, S ;
Kombrink, E ;
Qiu, JL ;
Hückelhoven, R ;
Stein, M ;
Freialdenhoven, A ;
Somerville, SC ;
Schulze-Lefert, P .
NATURE, 2003, 425 (6961) :973-977